2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

31 - 40 of 57 results for: AA

AA 252: Techniques of Failure Analysis

Introduction to the field of failure analysis, including fire and explosion analysis, large scale catastrophe projects, traffic accident reconstruction, aircraft accident investigation, human factors, biomechanics and accidents, design defect cases, materials failures and metallurgical procedures, and structural failures. Product liability, failure modes and effects analysis, failure prevention, engineering ethics, and the engineer as expert witness.
Terms: Spr | Units: 3
Instructors: Murray, S. (PI)

AA 271A: Dynamics and Control of Spacecraft and Aircraft

The dynamic behavior of aircraft and spacecraft, and the design of automatic control systems for them. For aircraft: non-linear and linearized longitudinal and lateral dynamics; linearized aerodynamics; natural modes of motion; autopilot design to enhance stability, control the flight path, and perform automatic landings. For spacecraft in orbit: natural longitudinal and lateral dynamic behavior and the design of attitude control systems. Prerequisites: AA242A, ENGR 105.
Terms: Spr | Units: 3
Instructors: Rock, S. (PI)

AA 272C: Global Positioning Systems

The principles of satellite navigation using GPS. Positioning techniques using code tracking, single and dual frequency, carrier aiding, and use of differential GPS for improved accuracy and integrity. Use of differential carrier techniques for attitude determination and precision position determination. Prerequisite: familiarity with matrix algebra and MatLab (or another mathematical programming language).
Terms: Win | Units: 3

AA 279A: Space Mechanics

Orbits of near-earth satellites and interplanetary probes; transfer and rendezvous; decay of satellite orbits; influence of earth's oblateness; sun and moon effects on earth satellites. Prerequisite: ENGR 15 or equivalent, and familiarity with MatLab (or another mathematical programming language).
Terms: Spr | Units: 3
Instructors: D'Amico, S. (PI)

AA 279B: Advanced Space Mechanics

Restricted 3-body problem. Relative motion, Hill's and Clohessy-Wiltshire equations. Lambert's problem. Satellite constellations and optimization. Communications and link budgets. Space debris. High fidelity simulation. Interplanetary mission planning, launch windows and gravity assists. Basic trajectory optimization. Several guest lectures from practitioners in the field. Individual final project chosen in consultation with instructor. Prerequisites: 279A or equivalent with permission of instructor. Fluency with MATLAB (or another mathematical programming language with 2D and 3D plotting capabilities).
Terms: Win | Units: 3
Instructors: Barrows, A. (PI)

AA 280: Smart Structures

Mechanics of smart materials and current approaches for engineering smart structures to monitor health, self heal, and adapt to environment. Definition of smart structures; constitutive models for smart materials; piezoelectric ceramics; electro-active polymers; shape memory alloys; bio-inspired materials and structures; self-healing materials; sensors and sensor networks; structural health monitoring; and energy harvesting. Prerequisite: AA 240A or consent of instructor.
Terms: Spr | Units: 3
Instructors: Senesky, D. (PI)

AA 283: Aircraft and Rocket Propulsion

Introduction to the design and performance of airbreathing and rocket engines. Topics: the physical parameters used to characterize propulsion system performance; gas dynamics of nozzles and inlets; cycle analysis of ramjets, turbojets, turbofans, and turboprops; component matching and the compressor map; introduction to liquid and solid propellant rockets; multistage rockets; hybrid rockets; thermodynamics of reacting gases. Prerequisites: undergraduate background in fluid mechanics and thermodynamics.
Terms: Win | Units: 3
Instructors: Cantwell, B. (PI)

AA 284A: Advanced Rocket Propulsion

The principles of rocket propulsion system design and analysis. Fundamental aspects of the physics and chemistry of rocket propulsion. Focus is on the design and analysis of chemical propulsion systems including liquids, solids, and hybrids. Nonchemical propulsion concepts such as electric and nuclear rockets. Launch vehicle design and optimization issues including trajectory calculations. Limited enrollment. Prerequisites: 283 or consent of instructor.
Terms: Aut | Units: 3

AA 284B: Propulsion System Design Laboratory

Propulsion systems engineering through the design and operation of a sounding rocket. Students work in small teams through a full project cycle including requirements definition, performance analysis, system design, fabrication, ground and flight testing, and evaluation. Prerequisite: 284A and consent of instructor.
Terms: Win | Units: 3
Instructors: Zilliac, G. (PI)

AA 284C: Propulsion System Design Laboratory

Continuation of 284A,B. Prerequisite: 284B, and consent of instructor.
Terms: Spr | Units: 3
Instructors: Zilliac, G. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints