2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 10 of 115 results for: CEE ; Currently searching winter courses. You can expand your search to include all quarters

CEE 29N: Managing Natural Disaster Risk

Natural disasters arise from the interaction of natural processes, such as earthquakes or floods, with human development that suffers safety-related and economic losses. We cannot predict exactly when those disasters will occur, or prevent them entirely, but we have a number of engineering and policy options that can reduce the impacts of such events.
Terms: Win | Units: 3 | UG Reqs: WAY-AQR | Grading: Letter (ABCD/NP)
Instructors: Baker, J. (PI)

CEE 31: Accessing Architecture Through Drawing

Preference to Architectural Design and CEE majors; others by consent of instructor. Drawing architecture to probe the intricacies and subtleties that characterize contemporary buildings. How to dissect buildings and appreciate the formal elements of a building, including scale, shape, proportion, colors and materials, and the problem solving reflected in the design. Students construct conventional architectural drawings, such as plans, elevations, and perspectives. Limited enrollment.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-CE | Grading: Letter (ABCD/NP)
Instructors: Wood, E. (PI)

CEE 32B: Design Theory

This seminar focuses on the key themes, histories, and methods of architectural theory -- a form of architectural practice that establishes the aims and philosophies of architecture. Architectural theory is primarily written, but it also incorporates drawing, photography, film, and other media. nnOne of the distinctive features of modern and contemporary architecture is its pronounced use of theory to articulate its aims. One might argue that modern architecture is modern because of its incorporation of theory. This course focuses on those early-modern, modern, and late-modern writings that have been and remain entangled with contemporary architectural thought and design practice. nnRather than examine the development of modern architectural theory chronologically, it is explored architectural through thematic topics. These themes enable the student to understand how certain architectural theoretical concepts endure, are transformed, and can be furthered through his/her own explorations.
Terms: Win | Units: 4 | UG Reqs: GER:DB-Hum | Grading: Letter (ABCD/NP)
Instructors: Beischer, T. (PI)

CEE 64: Air Pollution and Global Warming: History, Science, and Solutions (CEE 263D)

Survey of Survey of air pollution and global warming and their renewable energy solutions. Topics: evolution of the Earth's atmosphere, history of discovery of chemicals in the air, bases and particles in urban smog, visibility, indoor air pollution, acid rain, stratospheric and Antarctic ozone loss, the historic climate record, causes and effects of global warming, impacts of energy systems on pollution and climate, renewable energy solutions to air pollution and global warming. UG Reqs: GER: DBNatSci
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

CEE 130: Architectural Design: 3-D Modeling, Methodology, and Process

Preference to Architectural Design majors; others by consent of instructor. Projects investigate conceptual approaches to the design of key architectural elements, such as wall and roof. Functional and structural considerations. Focus is on constructing 3-D models in a range of materials; 3-D computer modeling. Students keep a graphic account of the evolution of their design process. Final project entails design of a simple structure. Limited enrollment. Pre- or corequisite: CEE 31 or 31Q.
Terms: Aut, Win | Units: 4 | UG Reqs: WAY-CE | Grading: Letter (ABCD/NP)

CEE 171: Environmental Planning Methods

For juniors and seniors. Use of microeconomics and mathematical optimization theory in the design of environmental regulatory programs; tradeoffs between equity and efficiency in designing regulations; techniques for predicting adverse effects in environmental impact assessments; information disclosure requirements; and voluntary compliance of firms with international regulating norms. Prerequisites: MATH 51. Recommended: 70.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit
Instructors: Ortolano, L. (PI)

CEE 195: Fundamentals of Structural Geology (GES 111)

Techniques for mapping using GPS and differential geometry to characterize structures; dimensional analysis and scaling relations; kinematics of deformation and flow; measurement and analysis of stress; elastic deformation and properties of rock; brittle deformation including fracture and faulting; linear viscous flow including folding and magma dynamics; model development and methodology. Models of tectonic processes are constructed and solutions visualized using MATLAB. Prerequisites: GES 1, MATH 51
Terms: Win | Units: 3 | UG Reqs: WAY-FR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Pollard, D. (PI)

CEE 263D: Air Pollution and Global Warming: History, Science, and Solutions (CEE 64)

Survey of Survey of air pollution and global warming and their renewable energy solutions. Topics: evolution of the Earth's atmosphere, history of discovery of chemicals in the air, bases and particles in urban smog, visibility, indoor air pollution, acid rain, stratospheric and Antarctic ozone loss, the historic climate record, causes and effects of global warming, impacts of energy systems on pollution and climate, renewable energy solutions to air pollution and global warming. UG Reqs: GER: DBNatSci
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

CEE 269B: Environmental Fluid Mechanics and Hydrology Seminar

Problems in all branches of water resources. Talks by visitors, faculty, and students. May be repeated two times for credit.
Terms: Win | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

CEE 48N: Managing Complex, Global Projects

This freshman seminar highlights the challenges the challenges associated with planning and executing complex and challenging global projects in private, governmental and nonprofit/NGO settings. Covers organization and project management theory, methods, and tools to optimize the design of work processes and organizations to enhance complex, global project outcomes. Student teams model and analyze the work process and organization of a real-world project team engaged in a challenging local or global project.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints