2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
by subject...

21 - 30 of 116 results for: CEE

CEE 146S: Engineering Economics and Sustainability (ENGR 60)

Engineering Economics is a subset of the field of economics that draws upon the logic of economics, but adds that analytical power of mathematics and statistics. The concepts developed in this course are broadly applicable to many professional and personal decisions, including making purchasing decisions, deciding between project alternatives, evaluating different processes, and balancing environmental and social costs against economic costs. The concepts taught in this course will be increasingly valuable as students climb the carrier ladder in private industry, a non-governmental organization, a public agency, or in founding their own startup. Eventually, the ability to make informed decisions that are based in fundamental analysis of alternatives is a part of every career. As such, this course is recommended for engineering and non-engineering students alike. This course is taught exclusively online in every quarter it is offered. (Prerequisites: MATH 19 or 20 or approved equivalent.)
Terms: Aut, Win, Spr, Sum | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Lepech, M. (PI)

CEE 155: Introduction to Sensing Networks for CEE (CEE 255)

Introduce the design and implementation of sensor networks for monitoring the built and natural environment. Emphasis on the integration of modern sensor and communication technologies, signal processing and statistical models for network data analysis and interpretation to create practical deployments to enable sustainable systems, in areas such as energy, weather, transportation and buildings. Students will be involved in a practical project that may involve deploying a small sensor system, data models and analysis and signal processing. Limited enrollment.
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit

CEE 156: Building Systems (CEE 256)

HVAC, lighting, and envelope systems for commercial and institutional buildings, with a focus on energy efficient design. Knowledge and skills required in the development of low-energy buildings that provide high quality environment for occupants.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter (ABCD/NP)
Instructors: Kolderup, E. (PI)

CEE 159: Managing Construction Innovation - Practicum (CEE 259)

CEE 159/259 students join Stanford researchers in developing performance metrics and key performance indicators, which inform the assessment and management of productivity policies, industry initiatives, progressive enterprises, global projects or experimental processes in the construction industry. This project-based practicum builds upon a global network of government agencies, professional institutions and member companies collaborating with the Center for Integrated Facility Engineering (CIFE). Through a series of Global Construction Innovation Case Studies, students will develop applied research skills that are essential for academic research, internships or industry practice, while gaining insights into innovative and industrialized construction practice, such as the industry applications of Building Information Modeling (BIM), Integrated Project Delivery (IPD), Lean Methodology, Prefabricated Pre-finished Volumetric Construction (PPVC), Smart Cities or Virtual Design and Construction (VDC). nNote to students: this course may be taken repeat for credit for up to 9 cumulative units.
Terms: Aut, Win, Spr | Units: 2-4 | Repeatable for credit | Grading: Letter (ABCD/NP)
Instructors: Kam, C. (PI)

CEE 162F: Coastal Engineering

Introduction to the relevant processes that shape the coastline, including the hydrodynamical forcing and the resultant coastal morphology. Discussion of the natural response of coastal systems to forcing by the environment (e.g. waves, tides, storms) and how this forcing affects the sediment budget along the coast. Engineering solutions for mitigation of erosion and the associated advantages and disadvantages of such solutions. Prerequisite: CEE 101B or equivalent.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Fringer, O. (PI)

CEE 166B: Floods and Droughts, Dams and Aqueducts (CEE 266B)

Sociotechnical systems associated with human use of water as a resource and the hazards posed by too much or too little water. Potable and non-potable water use and conservation. Irrigation, hydroelectric power generation, rural and urban water supply systems, storm water management, flood damage mitigation, and water law and institutions. Emphasis is on engineering design. Prerequisite: 166A or equivalent. (Freyberg)
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

CEE 166D: Water Resources and Water Hazards Field Trips (CEE 266D)

Introduction to water use and water hazards via weekly field trips to local and regional water resources facilities (dams, reservoirs, fish ladders and hatcheries, pumping plants, aqueducts, hydropower plants, and irrigation systems) and flood damage mitigation facilities (storm water detention ponds, channel modifications, flood control dams, and reservoirs). Each trip preceded by an orientation lecture.
Terms: Win | Units: 2 | Grading: Satisfactory/No Credit
Instructors: Freyberg, D. (PI)

CEE 174B: Wastewater Treatment: From Disposal to Resource Recovery

This course builds upon CEE 174A, covering basic hydraulics and the fundamental processes used to treat wastewater. In addition to understanding the details behind the fundamental processes, students will learn to feel comfortable developing initial design criteria (30% designs) for fundamental processes. Students should also develop a feel for the typical values of water treatment parameters and the equipment involved. After covering conventional processes, the class addresses newer processes used to meet emerging treatment objectives, including nutrient removal, composting of biosolids and recycling of wastewater for beneficial uses, including potable reuse. Pre-requisites: CEE 174A.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

CEE 176A: Energy Efficient Buildings

Quantitative evaluation of technologies and techniques for reducing energy demand of residential-scale buildings. Heating and cooling load calculations, financial analysis, passive-solar design techniques, water heating systems, photovoltaic system sizing for net-zero-energy all-electric homes. Offered for 3 or 4 units; the 4-unit option includes a lab.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit
Instructors: Masters, G. (PI)

CEE 177X: Current Topics in Sustainable Engineering (CEE 277X)

This course is the first half of a two quarter, project-based design course that addresses the cultural, political, organizational, technical, and business issues at the heart of implementing sustainable engineering projects in the developing world. Students will be placed into one of three project teams and tackle a real-world design challenge in partnership with social entrepreneurs and NGOs. In CEE 177X/277X, students will gain the background skills and context necessary to effectively design engineering projects in developing nations. (Cardinal Course certified by the Haas Center). Instructor consent required.
Terms: Win | Units: 1-3 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: Mitch, W. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints