2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 33 results for: ENGR

ENGR 2: Stanford Summer Engineering Academy

Offered in August prior to start of fall quarter for incoming first-year students participating in the Stanford Summer Engineering Academy (SSEA). This course is comprised of two parallel tracks: One focused on the development and practice of critical problem solving in Computer Science; a second focused on providing a strong foundation in Mathematics. Based on skills developed in both tracks, students also explore the breadth and depth of engineering disciplines from faculty across the School of Engineering. Available by application only.
Terms: Aut | Units: 2
Instructors: Reyes, K. (PI)

ENGR 2A: SSEA Seminar: Developing Your Leadership Toolkit

In this weekly seminar, SSEA students will learn practical leadership skills so they can successfully navigate academic and professional opportunities while at Stanford and achieve meaningful results. Mentorship and career exploration will also be delivered through an inspiring line up of guest speakers and interactive activities.
Terms: Aut | Units: 1
Instructors: Reyes, K. (PI)

ENGR 14: Intro to Solid Mechanics

Introduction to engineering analysis using the principles of engineering solid mechanics. Builds on the math and physical reasoning concepts in Physics 41 to develop skills in evaluation of engineered systems across a variety of fields. Foundational ideas for more advanced solid mechanics courses such as ME80 or CEE101A. Interactive lecture sessions focused on mathematical application of key concepts, with weekly complementary lab session on testing and designing systems that embody these concepts. Limited enrollment, subject to instructor approval. Pre-requisite: Physics 41. When signing up for this course make sure to sign up both for the lecture and for a Discussion Section.
Terms: Aut, Win, Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR

ENGR 15: Dynamics

The application of Newton's Laws to solve 2-D and 3-D static and dynamic problems, particle and rigid body dynamics, freebody diagrams, and equations of motion, with application to mechanical, biomechanical, and aerospace systems. Computer numerical solution and dynamic response. Prerequisites: Calculus (differentiation and integration) such as Math 19, 20; and ENGR 14 (statics and strength) or a mechanics course in physics such as PHYSICS 41.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

ENGR 40M: An Intro to Making: What is EE

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.
Terms: Aut, Win, Sum | Units: 5 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

ENGR 50M: Introduction to Materials Science, Biomaterials Emphasis

Topics include: the relationship between atomic structure and macroscopic properties of man-made and natural materials; mechanical and thermodynamic behavior of surgical implants including alloys, ceramics, and polymers; and materials selection for biotechnology applications such as contact lenses, artificial joints, and cardiovascular stents. No prerequisite.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

ENGR 55: Foundational Biology for Engineers (CHEMENG 55)

Biology, physics, and chemistry are the substrates for the modern engineer. Whether you are interested in developing the next generation of medicines or would like the next material or catalyst you design to be inspired by solutions found in Nature, this course will deepen your knowledge of the foundational concepts in biology and enrich your engineering skills. We will introduce the physical principles that underlie the construction and function of living cells, the fundamental building block of life. Emphasis will be on systems, logic, quantitation, and mechanisms of the molecular processes utilized by all life on Earth. This course has no prerequisites, but prior completion of CHEM 31 or equivalent is highly recommended.
Terms: Aut | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA

ENGR 60: Engineering Economics and Sustainability (CEE 146S)

Engineering Economics is a subset of the field of economics that draws upon the logic of economics, but adds that analytical power of mathematics and statistics. The concepts developed in this course are broadly applicable to many professional and personal decisions, including making purchasing decisions, deciding between project alternatives, evaluating different processes, and balancing environmental and social costs against economic costs. The concepts taught in this course will be increasingly valuable as students climb the carrier ladder in private industry, a non-governmental organization, a public agency, or in founding their own startup. Eventually, the ability to make informed decisions that are based in fundamental analysis of alternatives is a part of every career. As such, this course is recommended for engineering and non-engineering students alike. This course is taught exclusively online in every quarter it is offered. (Prerequisites: MATH 19 or 20 or approved equivalent.)
Terms: Aut, Spr, Sum | Units: 3

ENGR 62: Introduction to Optimization (MS&E 111, MS&E 211)

Formulation and computational analysis of linear, quadratic, and other convex optimization problems. Applications in machine learning, operations, marketing, finance, and economics. Prerequisite: CME 100 or MATH 51.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR

ENGR 100: Teaching Public Speaking

The theory and practice of teaching public speaking and presentation development. Lectures/discussions on developing an instructional plan, using audiovisual equipment for instruction, devising tutoring techniques, and teaching delivery, organization, audience analysis, visual aids, and unique speaking situations. Weekly practice speaking. Students serve as apprentice speech tutors. Those completing course may become paid speech instructors in the Technical Communications Program. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr | Units: 3
Instructors: Vassar, M. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints