2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

61 - 70 of 201 results for: all courses

EARTHSYS 110: Introduction to the Foundations of Contemporary Geophysics (GEOPHYS 110, GEOPHYS 215)

Introduction to the foundations of contemporary geophysics. Lectures link important topics in contemporary Geophysics ("What we study") to methods used to make progress on these topics ("How we study"). Topics range from plate tectonics to natural hazards; ice sheets to sustainability. For each topic, we focus is on how the interpretation of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetism and remote sensing) provides fundamental insight into the behavior of the Earth. The course will includes a required all-day Saturday field exercise Feb 02/10 (rain-date: 02/17). Prerequisite: CME 100 or MATH 51, or co-registration in either.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

EARTHSYS 113: Earthquakes and Volcanoes (GEOPHYS 90)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci, WAY-AQR
Instructors: Beroza, G. (PI)

EARTHSYS 114: Global Change and Emerging Infectious Disease (EARTHSYS 214, ESS 213, HUMBIO 114)

The changing epidemiological environment. How human-induced environmental changes, such as global warming, deforestation and land-use conversion, urbanization, international commerce, and human migration, are altering the ecology of infectious disease transmission, and promoting their re-emergence as a global public health threat. Case studies of malaria, cholera, hantavirus, plague, and HIV.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-SocSci, WAY-SMA, WAY-AQR
Instructors: Jones, J. (PI)

EARTHSYS 141: Remote Sensing of the Oceans (EARTHSYS 241, ESS 141, ESS 241, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR
Instructors: Arrigo, K. (PI)

EARTHSYS 142: Remote Sensing of Land (EARTHSYS 242, ESS 162, ESS 262)

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR

EARTHSYS 143H: Quantitative Methods for Marine Ecology and Conservation (BIO 143, BIO 243, CEE 164, CEE 264H, EARTHSYS 243H, OCEANS 143)

NOTE: This course will be taught in-person on main campus, in hybrid format with Zoom options. The goal of this course is to learn the foundations of ecological modeling with a specific (but not exclusive) focus on marine conservation and sustainable exploitation of renewable resources. Students will be introduced to a range of methods - from basic to advanced - to characterize population structure, conduct demographic analyses, estimate extinction risk, identify temporal trends and spatial patterns, quantify the effect of environmental determinants and anthropogenic pressures on the dynamics of marine populations, describe the potential for adaptation to climate change. This course will emphasize learning by doing, and will rely heavily on practical computer laboratories, in R and/or Phyton, based on data from our own research activities or peer reviewed publications. Students with a background knowledge of statistics, programming and calculus will be most welcome. Formally BIOHOPK 143H and 243H.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR, WAY-FR

EARTHSYS 144: Fundamentals of Geographic Information Science (GIS) (ESS 164)

Everything is somewhere, and that somewhere matters." The rapid growth and maturity of spatial data technologies over the past decade represent a paradigm shift in the applied use of location data from high-level overviews of administrative interests, to highly personalized location-based services that place the individual at the center of the map, at all times. The use of spatial data and related technology continues to grow in fields ranging from environmental sciences to epidemiology to market prediction. This course will present an overview of current approaches to the use of spatial data and its creation, capture, management, analysis and presentation, in a research context. Topics will include modeling of geographic objects and associated data, modeling of geographic space and the conceptual foundations of "spatial thinking," field data collection, basic spatial statistical analysis, remote sensing & the use of satellite-based imagery, "Big Data" and machine learning approaches t more »
Everything is somewhere, and that somewhere matters." The rapid growth and maturity of spatial data technologies over the past decade represent a paradigm shift in the applied use of location data from high-level overviews of administrative interests, to highly personalized location-based services that place the individual at the center of the map, at all times. The use of spatial data and related technology continues to grow in fields ranging from environmental sciences to epidemiology to market prediction. This course will present an overview of current approaches to the use of spatial data and its creation, capture, management, analysis and presentation, in a research context. Topics will include modeling of geographic objects and associated data, modeling of geographic space and the conceptual foundations of "spatial thinking," field data collection, basic spatial statistical analysis, remote sensing & the use of satellite-based imagery, "Big Data" and machine learning approaches to spatial data, and cartographic design and presentation including the use of web-based "Storymap" platforms. The course will consist of weekly lectures, guest speakers, computer lab assignments, midterm and final exams, as well as an individual final project requirement. This course must be taken for a minimum of 3 units and a letter grade to be eligible for Ways credit.
Terms: Aut, Spr | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR

EARTHSYS 152: Marine Chemistry (EARTHSYS 252, ESS 152, ESS 252, OCEANS 152, OCEANS 252)

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (ESS/ EARTHSYS 151/251)
Last offered: Spring 2023 | UG Reqs: WAY-AQR, WAY-SMA

EARTHSYS 153: Solving Social Problems with Data (COMM 140X, DATASCI 154, ECON 163, MS&E 134, POLISCI 154, PUBLPOL 155, SOC 127)

Introduces students to the interdisciplinary intersection of data science and the social sciences through an in-depth examination of contemporary social problems. Provides a foundational skill set for solving social problems with data including quantitative analysis, modeling approaches from the social sciences and engineering, and coding skills for working directly with big data. Students will also consider the ethical dimensions of working with data and learn strategies for translating quantitative results into actionable policies and recommendations. Lectures will introduce students to the methods of data science and social science and apply these frameworks to critical 21st century challenges, including education & inequality, political polarization, and health equity & algorithmic design in the fall quarter, and social media, climate change, and school choice & segregation in the spring quarter. In-class exercises and problem sets will provide students with the opportunity to use more »
Introduces students to the interdisciplinary intersection of data science and the social sciences through an in-depth examination of contemporary social problems. Provides a foundational skill set for solving social problems with data including quantitative analysis, modeling approaches from the social sciences and engineering, and coding skills for working directly with big data. Students will also consider the ethical dimensions of working with data and learn strategies for translating quantitative results into actionable policies and recommendations. Lectures will introduce students to the methods of data science and social science and apply these frameworks to critical 21st century challenges, including education & inequality, political polarization, and health equity & algorithmic design in the fall quarter, and social media, climate change, and school choice & segregation in the spring quarter. In-class exercises and problem sets will provide students with the opportunity to use real-world datasets to discover meaningful insights for policymakers and communities. This course is the required gateway course for the new major in Data Science & Social Systems. Preference given to Data Science & Social Systems B.A. majors and prospective majors. Course material and presentation will be at an introductory level. Enrollment and participation in one discussion section is required. Sign up for the discussion section will occur on Canvas at the start of the quarter. Prerequisites: CS106A (required), DATASCI 112 (recommended as pre or corequisite). Limited enrollment. Please complete the interest form here: https://forms.gle/8ui9RPgzxjGxJ9k29. A permission code will be given to admitted students to register for the class.
Terms: Aut, Spr | Units: 5 | UG Reqs: WAY-AQR, WAY-SI

EARTHSYS 185: Feeding Nine Billion

Feeding a growing and wealthier population is a huge task, and one with implications for many aspects of society and the environment. There are many tough choices to be made- on fertilizers, groundwater pumping, pesticide use, organics, genetic modification, etc. Unfortunately, many people form strong opinions about these issues before understanding some of the basics of how food is grown, such as how most farmers currently manage their fields, and their reasons for doing so. The goal of this class is to present an overview of global agriculture, and the tradeoffs involved with different practices. Students will develop two key knowledge bases: basic principles of crop ecology and agronomy, and familiarity with the scale of the global food system. The last few weeks of the course will be devoted to building on this knowledge base to evaluate different future directions for agriculture.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints