2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 29 results for: MATSCI

MATSCI 100: Undergraduate Independent Study

Independent study in materials science under supervision of a faculty member.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

MATSCI 150: Undergraduate Research

Participation in a research project.
Terms: Aut, Win, Spr, Sum | Units: 3-6 | Repeatable for credit

MATSCI 153: Nanostructure and Characterization

Students will study the theory and application of characterization techniques used to examine the structure of materials at the nanoscale. Students will learn to classify the structure of materials such as semiconductors, ceramics, metals, and nanotubes according to the principles of crystallography. Methods used widely in academic and industrial research, including X-ray diffraction and electron microscopy, will be demonstrated along with their application to the analysis of nanostructures. Prerequisites: E-50 or equivalent introductory materials science course.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 157: Quantum Mechanics of Nanoscale Materials

Introduction to quantum mechanics and its application to the properties of materials. No prior background beyond a working knowledge of calculus and high school physics is presumed. Topics include: The Schrodinger equation and applications to understanding of the properties of quantum dots, semiconductor heterostructures, nanowires, and bulk solids. Tunneling processes and applications to nanoscale devices; the scanning tunneling microscope, and quantum cascade lasers. Simple models for the electronic properties and band structure of materials including semiconductors, insulators and metals and applications to semiconductor devices. Time-dependent perturbation theory and interaction of light with materials with applications to laser technology.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 158: Soft Matter in Biomedical Devices, Microelectronics, and Everyday Life (BIOE 158, CHEMENG 160)

The relationships between molecular structure, morphology, and the unique physical, chemical, and mechanical behavior of polymers and other types of ¿soft matter¿ are discussed. Topics include methods for preparing synthetic polymers and examination of how enthalpy and entropy determine conformation, solubility, mechanical behavior, microphase separation, crystallinity, glass transitions, elasticity, and linear viscoelasticity. Case studies covering polymers in biomedical devices and microelectronics will be covered. Prerequisites: ENG 50 or equivalent.
Terms: Win | Units: 4

MATSCI 161: Energy Materials Laboratory (MATSCI 171)

A material that is currently being used in a cutting edge energy -related device such as a solar cell, battery or smart window will be thoroughly characterized throughout the quarter. Fabrication techniques could include electroplating, spin coating and thermal evaporation. There will be an emphasis in this course on characterization methods such as scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, optical microscopy, four-point probe measurements of conductivity, visible absorption and reflection spectroscopy and electrochemical measurements (cyclic voltammetry). Devices will be fabricated and their performance will be tested. In this Writing in the Major course, students will put together all of the data they collect during the quarter into a final paper. Undergraduates register for 161 for 4 units; graduates register for 171 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 162: X-Ray Diffraction Laboratory (MATSCI 172, PHOTON 172)

Experimental x-ray diffraction techniques for microstructural analysis of materials, emphasizing powder and single-crystal techniques. Diffraction from epitaxial and polycrystalline thin films, multilayers, and amorphorous materials using medium and high resolution configurations. Determination of phase purity, crystallinity, relaxation, stress, and texture in the materials. Advanced experimental x-ray diffraction techniques: reciprocal lattice mapping, reflectivity, and grazing incidence diffraction. Enrollment limited to 20. Undergraduates register for 162 for 4 units; graduates register for 172 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci

MATSCI 165: Nanoscale Materials Physics Computation Laboratory (MATSCI 175)

Computational exploration of fundamental topics in materials science using Java-based computation and visualization tools. Emphasis is on the atomic-scale origins of macroscopic materials phenomena. Simulation methods include molecular dynamics and Monte Carlo with applications in thermodynamics, kinetics, and topics in statistical mechanics. Required prerequisites: Freshman-level physics, undergraduate thermodynamics. Undergraduates register for 165 for 4 units; graduates register for 175 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: WAY-SMA

MATSCI 171: Energy Materials Laboratory (MATSCI 161)

A material that is currently being used in a cutting edge energy -related device such as a solar cell, battery or smart window will be thoroughly characterized throughout the quarter. Fabrication techniques could include electroplating, spin coating and thermal evaporation. There will be an emphasis in this course on characterization methods such as scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, optical microscopy, four-point probe measurements of conductivity, visible absorption and reflection spectroscopy and electrochemical measurements (cyclic voltammetry). Devices will be fabricated and their performance will be tested. In this Writing in the Major course, students will put together all of the data they collect during the quarter into a final paper. Undergraduates register for 161 for 4 units; graduates register for 171 for 3 units.
Terms: Win | Units: 3-4

MATSCI 172: X-Ray Diffraction Laboratory (MATSCI 162, PHOTON 172)

Experimental x-ray diffraction techniques for microstructural analysis of materials, emphasizing powder and single-crystal techniques. Diffraction from epitaxial and polycrystalline thin films, multilayers, and amorphorous materials using medium and high resolution configurations. Determination of phase purity, crystallinity, relaxation, stress, and texture in the materials. Advanced experimental x-ray diffraction techniques: reciprocal lattice mapping, reflectivity, and grazing incidence diffraction. Enrollment limited to 20. Undergraduates register for 162 for 4 units; graduates register for 172 for 3 units.
Terms: Win | Units: 3-4
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints