2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 39 results for: STATS

STATS 60: Introduction to Statistical Methods: Precalculus (PSYCH 10, STATS 160)

Techniques for organizing data, computing, and interpreting measures of central tendency, variability, and association. Estimation, confidence intervals, tests of hypotheses, t-tests, correlation, and regression. Possible topics: analysis of variance and chi-square tests, computer statistical packages.
Terms: Aut, Win, Spr, Sum | Units: 5 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR

STATS 160: Introduction to Statistical Methods: Precalculus (PSYCH 10, STATS 60)

Techniques for organizing data, computing, and interpreting measures of central tendency, variability, and association. Estimation, confidence intervals, tests of hypotheses, t-tests, correlation, and regression. Possible topics: analysis of variance and chi-square tests, computer statistical packages.
Terms: Aut, Win, Spr, Sum | Units: 5

STATS 191: Introduction to Applied Statistics

Statistical tools for modern data analysis. Topics include regression and prediction, elements of the analysis of variance, bootstrap, and cross-validation. Emphasis is on conceptual rather than theoretical understanding. Applications to social/biological sciences. Student assignments/projects require use of the software package R. Recommended: 60, 110, or 141.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-Math, WAY-AQR

STATS 198: Practical Training

For students majoring in Mathematical and Computational Science only. Students obtain employment in a relevant industrial or research activity to enhance their professional experience. Students may enroll in summer quarters only for a total of three times. For corresponding Statistics master's course see Stats 298.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 3 times (up to 10 units total)

STATS 199: Independent Study

For undergraduates.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

STATS 200: Introduction to Statistical Inference

Modern statistical concepts and procedures derived from a mathematical framework. Statistical inference, decision theory; point and interval estimation, tests of hypotheses; Neyman-Pearson theory. Bayesian analysis; maximum likelihood, large sample theory. Prerequisite: 116.
Terms: Aut, Win | Units: 3

STATS 203: Introduction to Regression Models and Analysis of Variance

Modeling and interpretation of observational and experimental data using linear and nonlinear regression methods. Model building and selection methods. Multivariable analysis. Fixed and random effects models. Experimental design. Pre- or corequisite: 200.
Terms: Win | Units: 3

STATS 209: Statistical Methods for Group Comparisons and Causal Inference (EDUC 260A, HRP 239)

Critical examination of statistical methods in social science and life sciences applications, especially for cause and effect determinations. Topics: mediating and moderating variables, potential outcomes framework, encouragement designs, multilevel models, matching and propensity score methods, analysis of covariance, instrumental variables, compliance, path analysis and graphical models, group comparisons with longitudinal data. See http://rogosateaching.com/stat209/. Prerequisite: intermediate-level statistical methods.
Terms: Win | Units: 3

STATS 211: Meta-research: Appraising Research Findings, Bias, and Meta-analysis (CHPR 206, HRP 206, MED 206)

Open to graduate, medical, and undergraduate students. Appraisal of the quality and credibility of research findings; evaluation of sources of bias. Meta-analysis as a quantitative (statistical) method for combining results of independent studies. Examples from medicine, epidemiology, genomics, ecology, social/behavioral sciences, education. Collaborative analyses. Project involving generation of a meta-research project or reworking and evaluation of an existing published meta-analysis. Prerequisite: knowledge of basic statistics.
Terms: Win | Units: 3

STATS 215: Statistical Models in Biology

Poisson and renewal processes, Markov chains in discrete and continuous time, branching processes, diffusion. Applications to models of nucleotide evolution, recombination, the Wright-Fisher process, coalescence, genetic mapping, sequence analysis. Theoretical material approximately the same as in STATS 217, but emphasis is on examples drawn from applications in biology, especially genetics. Prerequisite: 116 or equivalent.
Terms: Win | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints