2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

41 - 50 of 89 results for: BIOE

BIOE 287: Introduction to Physiology and Biomechanics of Hearing (ME 166, ME 266)

Hearing is fundamental to our ability to communicate, yet in the US alone over 30 million people suffer some form of hearing impairment. As engineers and scientists, it is important for us to understand the underlying principles of the auditory system if we are to devise better ways of helping those with hearing loss. The goal of this course is to introduce undergraduate and graduate students to the anatomy, physiology, and biomechanics of hearing. Principles from acoustics, mechanics, and hydrodynamics will be used to build a foundational understanding of one of the most complex, interdisciplinary, and fascinating areas of biology. Topics include the evolution of hearing, computational modeling approaches, fluid-structure interactions, ion-channel transduction, psychoacoustics, diagnostic tools, and micrometer to millimeter scale imaging methods. We will also study current technologies for mitigating hearing loss via passive and active prostheses, as well as future regenerative therapies.
Instructors: Puria, S. (PI)

BIOE 291: Principles and Practice of Optogenetics for Optical Control of Biological Tissues

Principles and practice of optical control of biological processes (optogenetics), emphasizing bioengineering approaches. Theoretical, historical, and current practice of the field. Requisite molecular-genetic, optoelectronic, behavioral, clinical, and ethical concepts, and mentored analysis and presentation of relevant papers. Final projects of research proposals and a laboratory component in BioX to provide hands-on training. Contact instructor before registering.
Terms: Aut | Units: 3

BIOE 299B: Practical Training

For Ph.D. students. Educational opportunities in high technology research and development labs in industry. Students engage in internship work and integrate that work into their academic program. Following internship work, students complete a research report outlining work activity, problems investigated, key results, and follow-up projects they expect to perform. Meets the requirements for curricular practical training for students on F-1 visas. Student is responsible for arranging own internship/employment and faculty sponsorship. Register under faculty sponsor's section number. All paperwork must be completed by student and faculty sponsor, as the student services office does not sponsor CPT. Students are allowed only two quarters of CPT per degree program. Course may be repeated twice.
Terms: Sum | Units: 1 | Repeatable 2 times (up to 2 units total)
Instructors: Lin, M. (PI)

BIOE 300A: Molecular and Cellular Bioengineering

The molecular and cellular bases of life from an engineering perspective. Analysis and engineering of biomolecular structure and dynamics, enzyme function, molecular interactions, metabolic pathways, signal transduction, and cellular mechanics. Quantitative primary literature. Prerequisites: CHEM 171 and BIO 41 or equivalents; MATLAB or an equivalent programming language.
Terms: Win | Units: 3
Instructors: Bryant, Z. (PI)

BIOE 300B: Physiology and Tissue Engineering

This course focuses on engineering approaches to quantifying, modeling and controlling the physiology and pathophysiology of complex systems, from the level of individual cells to tissue, organ and multi-organ systems.
Terms: Aut | Units: 3
Instructors: Covert, M. (PI)

BIOE 301A: Molecular and Cellular Engineering Lab

Preference to Bioengineering graduate students. Practical applications of biotechnology and molecular bioengineering including recombinant DNA techniques, molecular cloning, microbial cell growth and manipulation, and library screening. Emphasis is on experimental design and data analysis. Limited enrollment. Fall (Cochran)
Terms: Aut | Units: 2
Instructors: Cochran, J. (PI)

BIOE 301B: Clinical Needs and Technology

The goal of this course is to introduce bioengineering students to medical technology as it is used in current clinical practice, in the modern tertiary care, subspecialty hospital. Half of the course will be devoted to labs, in which small groups of students participate in hands-on experiences using advanced clinical technology in areas such as medical imaging, robotic surgery, and minimally invasive diagnosis and treatment. The second half of the course brings pairs of students and clinical faculty mentors together for a more in-depth, focused exposure to clinical care in one specific area. Final grades will be based on attendance, and presentations made by each pair of student to the class about their mentoring experience.
Terms: Win | Units: 2
Instructors: Daniel, B. (PI)

BIOE 301C: Diagnostic Devices Lab (BIOE 201C)

This course exposes students to the engineering principles and clinical application of medical devices through lectures and hands-on labs, performed in teams of two. Teams take measurements with these devices and fit their data to theory presented in the lecture. Devices covered include X-ray, CT, MRI, EEG, ECG, Ultrasound and BMI (Brain-machine interface). Prerequisites: BioE 103 or BioE 300B or EE 122B.
Terms: Spr | Units: 3
Instructors: Lee, J. (PI)

BIOE 311: Biophysics of Multi-cellular Systems and Amorphous Computing (BIOE 211, BIOPHYS 311, DBIO 211)

Provides an interdisciplinary perspective on the design, emergent behavior, and functionality of multi-cellular biological systems such as embryos, biofilms, and artificial tissues and their conceptual relationship to amorphous computers. Students discuss relevant literature and introduced to and apply pertinent mathematical and biophysical modeling approaches to various aspect multi-cellular systems, furthermore carry out real biology experiments over the web. Specific topics include: (Morphogen) gradients; reaction-diffusion systems (Turing patterns); visco-elastic aspects and forces in tissues; morphogenesis; coordinated gene expression, genetic oscillators and synchrony; genetic networks; self-organization, noise, robustness, and evolvability; game theory; emergent behavior; criticality; symmetries; scaling; fractals; agent based modeling. The course is geared towards a broadly interested graduate and advanced undergraduates audience such as from bio / applied physics, computer science, developmental and systems biology, and bio / tissue / mechanical / electrical engineering. Prerequisites: Previous knowledge in one programming language - ideally Matlab - is recommended; undergraduate students benefit from BIOE 41, BIOE 42, or equivalent.
Terms: Win | Units: 2-3

BIOE 313: Neuromorphics: Brains in Silicon (EE 304)

This course introduces neuromorphic system design, starting at the device level, going through the circuit level, and ending up at the system level. At the device level, it covers MOS transistor operation in the subthreshold region. At the circuit level, it covers silicon neuron and synapse design. And at the system level, it covers to reroutable interconnection. At the end of the course, you will understand how various neuromorphic architectures¿ area and energy use scale with network size. Prerequisites: EE114 & EE108A.
Terms: Spr | Units: 3
Instructors: Boahen, K. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints