2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

71 - 80 of 122 results for: GS

GS 235: Field and Analytical Methods in Historical Geobiology (GS 135)

Introduction to research methods in historical geobiology. This research-based course will examine how life in ancient oceans, as recorded in the paleontological record, was affected by environmental change, as recorded in the geochemical record. Students will collect paleontological and geochemical data from a measured stratigraphic section in the western United States. In lab, students will learn low temperature geochemical techniques focusing on the cycling of biogeochemical elements (O, C, S, and Fe) in marine sediments throughout Earth history. This is a lab-based course complemented with lectures. Preference will be given to students able to attend a four-day field trip at the end of spring break to measure the stratigraphic section and collect samples.
Last offered: Spring 2016

GS 237: Surface and Near-Surface Hydrologic Response (CEE 260B)

Quantitative review of process-based hydrology and geomorphology. Introduction to finite-difference and finite-element methods of numerical analysis. Topics: biometeorology, unsaturated and saturated subsurface fluid flow, overland and open channel flow, and physically-based simulation of coupled surface and near-surface hydrologic response. Links hydrogeology, soil physics, and surface water hydrology.
Terms: Aut | Units: 3
Instructors: Loague, K. (PI)

GS 238: Soil Physics

Physical properties of the soil solid phase emphasizing the transport, retention, and transformation of water, heat, gases, and solutes in the unsaturated subsurface. Field experiments.
Last offered: Autumn 2015

GS 240: Geostatistics (ENERGY 240)

Geostatistical theory and practical methodologies for quantifying and simulating spatial and spatio-temporal patterns for the Earth Sciences. Real case development of models of spatial continuity, including variograms, Boolean models and training images. Estimation versus simulation of spatial patterns. Loss functions. Estimation by kriging, co-kriging with secondary data. Dealing with data on various scales. Unconditional and conditional Boolean simulation, sequential simulation for continuous and categorical variables. Multi-variate geostatistical simulation. Probabilistic and pattern-based approaches to multiple-point simulation. Trend, secondary variable, auxiliary variable and probability-type constraints. Quality control techniques on generated models. Workflows for practical geostatistical applications in mining, petroleum, hydrogeology, remote sensing and environmental sciences. prerequisites: Energy 160/260 or basic course in data analysis/statistics
Terms: Spr | Units: 2-3

GS 241: Data Science for Geoscience

Comprehensive overview and taxonomy of data science (statistics, machine learning & computer vision) relevant for geological sciences, as well as other Earth Sciences. Areas covered are: extreme value statistics for predicting rare geological events; compositional data analysis for geochemistry; multivariate analysis for design of geological data & computer experiments; probabilistic aggregation of evidence for potential mapping; functional data analysis for multivariate environmental datasets, dimension reduction methods for analysis & visualization of geological data & models; sensitivity analysis of coupled physical/chemical numerical models; machine learning-based classification & regression for building surrogate computational models; identification & learning of geological objects with computer vision. Focus on practicality rather than theory. Matlab exercises on realistic data problems.
Last offered: Winter 2016

GS 246: Reservoir Characterization and Flow Modeling with Outcrop Data (ENERGY 146, ENERGY 246)

Project addressing a reservoir management problem by studying an outcrop analog, constructing geostatistical reservoir models, and performing flow simulation. How to use outcrop observations in quantitative geological modeling and flow simulation. Relationships between disciplines. Weekend field trip.
Terms: Aut | Units: 3

GS 247: Architecture of Turbidite Depositional Systems

This course considers the research that has led to current architectural models of turbidite deposits as we examine diverse data sets that allow us to test these models. Intense exploration and exploitation activities by the petroleum industry have significantly advanced understanding of turbidite systems. These activities stimulated research aimed at developing predictive models of the three common turbidite reservoir types: (1) confined channel systems, (2) weakly confined channel systems, and (3) unconfined lobe systems. Each of these reservoir types are examined in detail considering recognition criteria, internal structure, reservoir characteristics, and important issues related to reservoir potential and performance. Topics of discussion include controlling processes, hierarchy, variability, uncertainty and active areas of research.
Last offered: Spring 2016

GS 248: The Petroleum System: Investigative method to explore for conventional & unconventional hydrocarbons

How the petroleum system concept can be used to more systematically investigate how hydrocarbon fluid becomes an unconventional accumulation in a pod of active source rock and how this fluid moves from this pod to a conventional pool. How to identify, map, and name a petroleum system. The conventional and unconventional accumulation as well as the use of modeling.
Terms: Aut | Units: 1

GS 250: Sedimentation Mechanics

The mechanics of sediment transport and deposition and the origins of sedimentary structures and textures as applied to interpreting modern sediments and ancient rock sequences. Dimensional analysis, fluid flow, drag, boundary layers, open channel flow, particle settling, erosion, sediment transport, sediment gravity flows, soft sediment deformation, and fluid escape. Required field trip and lab section.
Terms: Aut | Units: 3-4
Instructors: Lowe, D. (PI)

GS 251: Sedimentary Basins

Analysis of the sedimentary fill and tectonic evolution of sedimentary basins. Topics: tectonic and environmental controls on depositional systems, detrital composition, burial history, and stratigraphic architecture; synthesis of basin development through time. One weekend field trip required. Prerequisites: 110, 151.
Last offered: Autumn 2015
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints