2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

81 - 90 of 298 results for: ME

ME 216A: Advanced Product Design: Needfinding

Human needs that lead to the conceptualization of future products, environments, systems, and services. Field work in public and private settings; appraisal of personal values; readings on social ethnographic issues; and needfinding for a corporate client. Emphasis is on developing the flexible thinking skills that enable the designer to navigate the future. Prerequisites for undergraduates: ME115A, ME115B and ME203, or consent of the instructor.
Terms: Aut | Units: 3-4

ME 216B: Advanced Product Design: Implementation 1

Summary project using knowledge, methodology, and skills obtained in Product Design major. Students implement an original design concept and present it to a professional jury. Prerequisite: 216A.
Terms: Win | Units: 4 | Repeatable 4 times (up to 16 units total)

ME 216C: Advanced Product Design: Implementation 2

ME216C: Implementation II is a continuation of ME216B. Students would develop project from ME216B to a further state of completion. Design will be completed, details about manufacturing, cost and production will be developed. Students will validate their projects by making them real in the world. Prerequisites for class are ME216A and ME216B.Prerequisite: 216A and 216B.
Terms: Spr | Units: 4

ME 216M: Introduction to the Design of Smart Products

This course will focus on the technical mechatronic skills as well as the human factors and interaction design considerations required for the design of smart products and devices. Students will learn techniques for rapid prototyping of smart devices, best practices for physical interaction design, fundamentals of affordances and signifiers, and interaction across networked devices. Students will be introduced to design guidelines for integrating electrical components such as PCBs into mechanical assemblies and consider the physical form of devices, not just as enclosures but also as a central component of the smart product. Prerequisites include: CS106A, E40, and ME 210, or instructor approval.
Terms: Spr | Units: 4

ME 217: Design & Construction in Wood

Exploration of the design and construction of objects using wood including the rich history and current trends for furniture. Taught in the Product Realization Lab. Limited enrollment via application; see stanford.edu/class/ me217
Terms: Win, Spr | Units: 3

ME 218A: Smart Product Design Fundamentals

Lecture/Lab. Team design project series on programmable electromechanical systems design. Topics: transistors as switches, basic digital and analog circuits, operational amplifiers, comparators, software design, state machines, programming in C. Lab fee. Limited enrollment.
Terms: Aut | Units: 4-5

ME 218B: Smart Product Design Applications

Lecture/lab. Second in team design project series on programmable electromechanical systems design. Topics: user I/O, timer systems, interrupts, signal conditioning, software design for embedded systems, statecharts, sensors, actuators, noise, and power supplies. Lab fee. Limited enrollment. Prerequisite: 218A or passing the smart product design fundamentals proficiency examination.
Terms: Win | Units: 4-5

ME 218C: Smart Product Design Practice

Lecture/lab. Advanced level in series on programmable electromechanical systems design. Topics: inter-processor communication, system design with multiple microprocessors, architecture and assembly language programming for the PIC microcontroller, controlling the embedded software tool chain, A/D and D/A techniques, electronic manufacturing technology. Team project. Lab fee. Limited enrollment. Prerequisite: 218B.
Terms: Spr | Units: 4-5

ME 218D: Smart Product Design: Projects

Lecture/lab. Industrially sponsored project is the culmination of the Smart Product Design sequence. Student teams take on an industrial project requiring application and extension of knowledge gained in the prior three quarters, including prototyping of a final solution with hardware, software, and professional documentation and presentation. Lectures extend the students' knowledge of electronic and software design, and electronic manufacturing techniques. Topics: chip level design of microprocessor systems, real time operating systems, alternate microprocessor architectures, and PCB layout and fabrication. Prerequisite: 218C.
Terms: Aut | Units: 3-4
Instructors: Carryer, J. (PI)

ME 219: The Magic of Materials and Manufacturing

Intended for design-oriented students who anticipate imagining and then creating new products with a focus on materiality and brand or design and business. Assumes basic knowledge of materials and manufacturing processes which results from taking ENGR 50, ME 203, or equivalent course/life experience. Goal is to acquire professional foundation information about materials and materiality from a product design point-of-view, manufacturing processes and business systems inside a factory, and story-telling by book authorship, essay writing, and multimedia presentation. Goal is for students to exhibit a deep and life-long love of materials and manufacturing in order to make great products and tell a good story about each one.
Terms: Aut | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints