2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

21 - 30 of 124 results for: GS

GS 105: Introduction to Field Methods

Two-week, field-based course in the White Mountains of eastern California. Introduction to the techniques for geologic mapping and geologic investigation in the field: systematic observations and data collection for lithologic columns and structural cross-sections. Interpretation of field relationships and data to determine the stratigraphic and deformational history of the region. Prerequisite: GS 1, recommended: GS 102.
Terms: Aut, Spr | Units: 3 | UG Reqs: WAY-SMA

GS 107: Journey to the Center of the Earth (GEOPHYS 184, GEOPHYS 274, GS 207)

The interconnected set of dynamic systems that make up the Earth. Focus is on fundamental geophysical observations of the Earth and the laboratory experiments to understand and interpret them. What earthquakes, volcanoes, gravity, magnetic fields, and rocks reveal about the Earth's formation and evolution. Offered every other year, winter quarter. Next offering Winter 2013-14.
| UG Reqs: WAY-SMA

GS 110: Structural Geology and Tectonics

Theory, principles, and practical techniques to measure, describe, analyze, and interpret deformation-related structures on Earth. Collection of fault and fold data in the field followed by lab and computer analysis; interpretation of geologic maps and methods of cross-section construction; structural analysis of fault zone and metamorphic rocks; measuring deformation; regional structural styles and associated landforms related to plate tectonic convergence, rifting, and strike-slip faulting; the evolution of mountain belts and formation of sedimentary basins. Prerequisite: GS 1, calculus. Recommended: 102.
Terms: Spr | Units: 3-5 | UG Reqs: GER: DB-NatSci

GS 111: Fundamentals of Structural Geology (CEE 195)

Techniques for mapping using GPS and differential geometry to characterize structures; dimensional analysis and scaling relations; kinematics of deformation and flow; measurement and analysis of stress; elastic deformation and properties of rock; brittle deformation including fracture and faulting; linear viscous flow including folding and magma dynamics; model development and methodology. Models of tectonic processes are constructed and solutions visualized using MATLAB. Prerequisites: GS 1, MATH 51
Terms: Win | Units: 3 | UG Reqs: WAY-FR, WAY-SMA

GS 114A: Our National Parks (EARTH 14, EARTH 114A, GS 14)

Explore the history and natural science of three national parks proximal to Stanford. Under the guidance of instructors, students will work in teams to learn about chosen aspects of these parks, develop dynamic self-guided tours for public consumption, and implement (and publish) these tours using the XibitEd app for iPhones. Students will learn how to present their findings to a general, non-scientific audience, delineate physical locations at which storytelling will take place through the XibitEd system, and create and configure the content for the system. The course will culminate in the publishing of the experiential learning tours, as well as a weekend-long field trip to the Pinnacles National Park
Terms: Win | Units: 2

GS 115: Engineering Geology and Global Change (CEE 196)

The application of geology and global change to the planning, design, and operation of engineering projects. Case histories taught in a seminar setting and field trips emphasize the impact of geology and global change on both individual engineering works and the built environment by considering Quaternary history and tectonics, anthropogenic sea level rise, active geologic processes, engineering properties of geologic deposits, site exploration, and professional ethics. Prerequisite: GS 1 or consent of instructor.
| UG Reqs: GER: DB-NatSci

GS 118: D^3: Disasters, Decisions, Developmen (EARTHSYS 124, ESS 118, ESS 218, GEOPHYS 118, GEOPHYS 218, GS 218)

This class connects the science behind natural disasters with the real-world constraints of disaster management and development. In each iteration of this class we will focus on a specific, disaster-prone location as case study. By collaborating with local stakeholders we will explore how science and engineering can make a make a difference in reducing disaster risk in the future. Offered every other year.
Terms: Win | Units: 3-5

GS 121: What Makes a Habitable Planet? (GS 221)

Physical processes affecting habitability such as large impacts and the atmospheric greenhouse effect, comets, geochemistry, the rise of oxygen, climate controls, and impact cratering. Detecting and interpreting the spectra of extrasolar terrestrial planets. Student-led discussions of readings from the scientific literature. Team taught by planetary scientists from NASA Ames Research Center.

GS 122: Planetary Systems: Dynamics and Origins (GS 222)

(Students with a strong background in mathematics and the physical sciences should register for 222.) Motions of planets and smaller bodies, energy transport in planetary systems, composition, structure and dynamics of planetary atmospheres, cratering on planetary surfaces, properties of meteorites, asteroids and comets, extrasolar planets, and planetary formation. Prerequisite: some background in the physical sciences, especially astronomy, geophysics, or physics.
Terms: Aut, Win | Units: 3-4

GS 123: Paleobiology (EARTHSYS 122, GS 223B)

Introduction to the fossil record with emphasis on marine invertebrates. Major debates in paleontological research. The history of animal life in the oceans. Topics include the nature of the fossil record, evolutionary radiations, mass extinctions, and the relationship between biological evolution and environmental change. Fossil taxa through time. Exercises in phylogenetics, paleoecology, biostratigraphy, and statistical methods.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints