MATH 19: Calculus
Introduction to differential calculus of functions of one variable. Review of elementary functions (including exponentials and logarithms), limits, rates of change, the derivative and its properties, applications of the derivative. Prerequisites: trigonometry, advanced algebra, and analysis of elementary functions (including exponentials and logarithms). You must have taken the math placement diagnostic (offered through the Math Department website) in order to register for this course.
Terms: Aut, Win

Units: 3

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 20: Calculus
The definite integral, Riemann sums, antiderivatives, the Fundamental Theorem of Calculus, and the Mean Value Theorem for integrals. Integration by substitution and by parts. Area between curves, and volume by slices, washers, and shells. Initialvalue problems, exponential and logistic models, direction fields, and parametric curves. Prerequisite:
Math 19 or equivalent. If you have not previously taken a calculus course at Stanford then you must have taken the math placement diagnostic (offered through the Math Department website) in order to register for this course.
Terms: Aut, Win, Spr

Units: 3

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Kimport, S. (PI)
;
Madnick, J. (PI)
;
Savvas, M. (PI)
...
more instructors for MATH 20 »
MATH 21: Calculus
Review of limit rules. Sequences, functions, limits at infinity, and comparison of growth of functions. Review of integration rules, integrating rational functions, and improper integrals. Infinite series, special examples, convergence and divergence tests (limit comparison and alternating series tests). Power series and interval of convergence, Taylor polynomials, Taylor series and applications. Prerequisite:
Math 20 or equivalent. If you have not previously taken a calculus course at Stanford then you must have taken the math placement diagnostic (offered through the Math Department website) in order to register for this course.
Terms: Aut, Win, Spr

Units: 4

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 51: Linear Algebra and Differential Calculus of Several Variables
Geometry and algebra of vectors, matrices and linear transformations, eigenvalues of symmetric matrices, vectorvalued functions and functions of several variables, partial derivatives and gradients, derivative as a matrix, chain rule in several variables, critical points and Hessian, leastsquares, , constrained and unconstrained optimization in several variables, Lagrange multipliers. Prerequisite: 21, 42, or the math placement diagnostic (offered through the Math Department website) in order to register for this course.
Terms: Aut, Win, Spr

Units: 5

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Cohen, R. (PI)
;
Lucianovic, M. (PI)
;
Ohrt, C. (PI)
...
more instructors for MATH 51 »
Instructors:
Cohen, R. (PI)
;
Lucianovic, M. (PI)
;
Ohrt, C. (PI)
;
Pan, D. (PI)
;
Perlmutter, N. (PI)
;
White, B. (PI)
;
Wieczorek, W. (PI)
MATH 51A: Linear Algebra and Differential Calculus of Several Variables, ACE
Students attend
MATH 51 lectures with different recitation sessions: three hours per week instead of two, emphasizing engineering applications. Prerequisite: application; see
https://web.stanford.edu/dept/soe/osa/ace.fb
Terms: Aut, Win, Spr

Units: 6

UG Reqs: GER:DBMath, WAYFR

Grading: Letter (ABCD/NP)
MATH 52: Integral Calculus of Several Variables
Iterated integrals, line and surface integrals, vector analysis with applications to vector potentials and conservative vector fields, physical interpretations. Divergence theorem and the theorems of Green, Gauss, and Stokes. Prerequisite: 51 or equivalents.
Terms: Aut, Win, Spr

Units: 5

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Starkston, L. (PI)
MATH 53: Ordinary Differential Equations with Linear Algebra
Ordinary differential equations and initial value problems, systems of linear differential equations with constant coefficients, applications of secondorder equations to oscillations, matrix exponentials, Laplace transforms, stability of nonlinear systems and phase plane analysis, numerical methods. Prerequisite: 51 or equivalents.
Terms: Aut, Win, Spr

Units: 5

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
MATH 61CM: Modern Mathematics: Continuous Methods
This is the first part of a theoretical (i.e., proofbased) sequence in multivariable calculus and linear algebra, providing a unified treatment of these topics. Covers general vector spaces, linear maps and duality, eigenvalues, inner product spaces, spectral theorem, metric spaces, differentiation in Euclidean space, submanifolds of Euclidean space, inverse and implicit function theorems, and many examples. Part of the linear algebra content is covered jointly with
Math 61DM. Students should know 1variable calculus and have an interest in a theoretical approach to the subject. Prerequisite: score of 5 on the BClevel Advanced Placement calculus exam, or consent of the instructor.
Terms: Aut

Units: 5

UG Reqs: GER:DBMath, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Mazzeo, R. (PI)
MATH 62CM: Modern Mathematics: Continuous Methods
A continuation of themes from
Math 61CM, centered around: manifolds, multivariable integration, and the general Stokes' theorem. This includes a treatment of multilinear algebra, further study of submanifolds of Euclidean space and an introduction to general manifolds (with many examples), differential forms and their geometric interpretations, integration of differential forms, Stokes' theorem, and some applications to topology. Prerequisite:
Math 61CM.
Terms: Win

Units: 5

UG Reqs: GER:DBMath, WAYFR

Grading: Letter (ABCD/NP)
Instructors:
Fredrickson, L. (PI)
MATH 63CM: Modern Mathematics: Continuous Methods
A proofbased course on ordinary differential equations, continuing themes from
Math 61CM and
Math 62CM. Topics include linear systems of differential equations and necessary tools from linear algebra, stability and asymptotic properties of solutions to linear systems, existence and uniqueness theorems for nonlinear differential equations with some applications to manifolds, behavior of solutions near an equilibrium point, and SturmLiouville theory. Prerequisites:
Math 61CM and
Math 62CM.
Terms: Spr

Units: 5

UG Reqs: GER:DBMath, WAYFR

Grading: Letter (ABCD/NP)
Instructors:
Luk, J. (PI)
Filter Results: