2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

11 - 20 of 303 results for: CEE ; Currently searching offered courses. You can also include unoffered courses

CEE 32R: American Architecture (AMSTUD 143A, ARTHIST 143A, ARTHIST 343A)

A historically based understanding of what defines American architecture. What makes American architecture American, beginning with indigenous structures of pre-Columbian America. Materials, structure, and form in the changing American context. How these ideas are being transformed in today's globalized world.
Terms: Aut, Win | Units: 4 | UG Reqs: GER:DB-Hum, WAY-A-II

CEE 32V: Architectural Design Lecture Series Course

This seminar is a companion to the Spring Architecture and Landscape Architecture Lecture Series. Students will converse with lecturers before the lectures, attend the lecture, and prepare short documents (written, graphic, exploratory) for two of the lectures. The five course meeting dates will correspond with the five lecture dates: April 3, April 17, May 1, May 15, and May 29. The meeting times are 4:30 - 5:30 for the seminar and 6:30 - 7:45 for the lecture
Terms: Spr | Units: 1 | Repeatable 2 times (up to 2 units total)

CEE 33B: Japanese Modern Architecture

This seminar will examine Japanese architecture and theory since 1900. Through a combination of case studies, readings, and chronological overview, students will develop an in-depth understanding of the aesthetic, expression of construction, structural dynamics, material choices, and philosophical viewpoints that impact Japanese modern and contemporary architectural design. Through lectures, class discussions, a series of weekly writing assignments, and a longer paper and presentation, students will develop the tools to analyze and understand Japanese design of today.
Terms: Win, Spr | Units: 4

CEE 33C: Housing Visions (URBANST 103C)

This course provides an introduction to American Housing practices, spanning from the Industrial Age to the present. Students will examine a range of projects that have aspired to a range of social, economic and/or environmental visions. While learning about housing typologies, students will also evaluate the ethical role that housing plays within society. The course focuses on the tactical potentials of housing, whether it is to provide a strong community, solve crisis situations, integrate social services, or encourage socio-economic mixture. Students will learn housing design principles and organizational strategies, and the impact of design on the urban environment. They will discuss themes of shared spaces and defensible spaces; and how design can accommodate the evolving demographics and culture of this country. For example, how can housing design address the changing relationship between living and working? What is the role of housing and ownership in economic mobility? These issues will be discussed within the context the changing composition of the American population and economy. n nThis course will be primarily discussion-based, using slideshows, readings and field trips as a departure points for student-generated conversations. Each student will be asked to lead a class discussion based on his/her research topic. Students will evaluate projects, identifying which aspects of the initial housing visions were realized, which did not, and why. Eventually, students might identify factors that lead to ¿successful¿ projects, and/or formulate new approaches that can strengthen or redefine the progressive role of housing: one inclusive of the complex social, economic, and ethical dimensions of design.
Terms: Aut | Units: 3 | UG Reqs: WAY-SI

CEE 33F: Honors Thesis Development

This course is designed for and required of those considering writing an Honors Thesis in their senior year. The course will guide students in developing their ideas into a clear, cogent and approvable proposal. Further, it will teach the basics of research including how to read an academic paper, how to write a literature review and how to develop a coherent and successful methodology. The course will meet weekly at a time convenient to all in Y2E2 267.
Terms: Win, Spr | Units: 2

CEE 33Q: Studio 1: Architecture - Space, Light, and Movement

This introductory architectural design course in the studio core sequence leads students through a series of spatial design exercises. Students will explore the fundamental principles of architectural design through drawing, model making, analysis, craft, organizational systems, narrative, movement, light, form, and scale. Students will also explore architecture on campus, taking their personal experience as a point of departure for the design investigations. We build models exploring spatial arrangements and configurations, learn to draw plans, develop craftsmanship building models, visit buildings around campus, and design a house for a visiting scholar. Most importantly we learn to engage and foster creativity. Many of the best architects and designers maintain a child-like sense of wonder. We all have it, but sometimes this may get de-emphasized as one moves along in their journey of education. We work together to spark and engage that curiosity to design dynamic spaces that relate to the human body. The course is 5 units and requires a significant amount of time. That said it is fun and engaging experience.
Terms: Spr | Units: 5
Instructors: Wood, E. (PI)

CEE 34N: Wind Energy Explained

Transformation of the energy economy depends on developing reliable and robust sources of alternative and renewable energy. This seminar introduces the theory, design, and application of wind energy technologies. The study of wind energy spans across a wide range of fields. To successfully deploy wind energy and other alternative technologies, we will need to converge across many knowledge domains, including civil, environmental, electrical, and mechanical engineering in addition to social science and public policy, among many others. Through this interdisciplinary course, we will learn about modern wind energy and its origins. We will explore the many facets of wind energy, including the characteristics of regional wind; aerodynamics, mechanics, and structural dynamics of wind turbine design; wind turbine control and integration with electrical systems; and environmental and economic aspects and impacts. Although this seminar seeks to explain wind energy, the topics covered can be applied to many other problems in engineering. This course will provide an introduction on how to find solutions to multi-disciplinary problems. True innovation lies on the border between fields. In this course, we will explore how to make these solutions a reality.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA

CEE 41Q: Clean Water Now! Urban Water Conflicts

Why do some people have access to as much safe, clean water as they need, while others do not? You will explore answers to this question by learning about, discussing and debating urban water conflicts including the Flint water crisis, the drought in South Africa, intermittent water supply in Mumbai, and arsenic contamination in Bangladesh. In this course, you will explore the technical, economic, institutional, social, policy, and legal aspects of urban water using these and more water conflicts as case studies. You will attend lectures, and participate in discussions, laboratory modules, and field work. In lectures, you will learn about the link between water and human and ecosystem health, drinking water and wastewater treatment methods, as well as policies and guidelines (local, national, and global from the World Health Organization) on water and wastewater, and the role of various stakeholders including institutions and the public, in the outcome of water conflicts. You will dive more »
Why do some people have access to as much safe, clean water as they need, while others do not? You will explore answers to this question by learning about, discussing and debating urban water conflicts including the Flint water crisis, the drought in South Africa, intermittent water supply in Mumbai, and arsenic contamination in Bangladesh. In this course, you will explore the technical, economic, institutional, social, policy, and legal aspects of urban water using these and more water conflicts as case studies. You will attend lectures, and participate in discussions, laboratory modules, and field work. In lectures, you will learn about the link between water and human and ecosystem health, drinking water and wastewater treatment methods, as well as policies and guidelines (local, national, and global from the World Health Organization) on water and wastewater, and the role of various stakeholders including institutions and the public, in the outcome of water conflicts. You will dive into details of conflicts over water through case studies using discussion and debate. You will have the opportunity to measure water contaminants in a laboratory module. You will sample a local stream and measure concentrations of Escherichia coli and enterococci bacteria in the water. A field trip to a local wastewater treatment plant will allow you to see how a plant operates. By the end of this course, you will have a greater appreciation of the importance of institutions, stakeholders and human behavior in the outcome of water conflicts, and the complexity of the coupled human-ecosystem-urban water system.
Terms: Win | Units: 3 | UG Reqs: WAY-AQR, WAY-SI

CEE 63: Weather and Storms (CEE 263C)

Daily and severe weather and global climate. Topics: structure and composition of the atmosphere, fog and cloud formation, rainfall, local winds, wind energy, global circulation, jet streams, high and low pressure systems, inversions, el Ni¿o, la Ni¿a, atmosphere/ocean interactions, fronts, cyclones, thunderstorms, lightning, tornadoes, hurricanes, pollutant transport, global climate and atmospheric optics.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA

CEE 64: Air Pollution and Global Warming: History, Science, and Solutions (CEE 263D)

Survey of Survey of air pollution and global warming and their renewable energy solutions. Topics: evolution of the Earth's atmosphere, history of discovery of chemicals in the air, bases and particles in urban smog, visibility, indoor air pollution, acid rain, stratospheric and Antarctic ozone loss, the historic climate record, causes and effects of global warming, impacts of energy systems on pollution and climate, renewable energy solutions to air pollution and global warming. UG Reqs: GER: DBNatSci
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints