EE 134: Introduction to Photonics
Photonics, optical components, and fiber optics. Conceptual and mathematical tools for design and analysis of optical communication, sensor and imaging systems. Experimental characterization of semiconductor lasers, optical fibers, photodetectors, receiver circuitry, fiber optic links, optical amplifiers, and optical sensors. Class project on confocal microscopy or other method of sensing or analyzing biometric data. Laboratory experiments. Prerequisite:
EE 102A and one of the following:
EE 42,
Physics 43, or
Physics 63.
Terms: Spr

Units: 4

UG Reqs: GER:DBEngrAppSci

Grading: Letter (ABCD/NP)
Instructors:
Bowden, A. (PI)
;
Li, L. (TA)
EE 142: Engineering Electromagnetics
Introduction to electromagnetism and Maxwell's equations in static and dynamic regimes. Electrostatics and magnetostatics: Gauss's, Coulomb's, Faraday's, Ampere's, BiotSavart's laws. Electric and magnetic potentials. Boundary conditions. Electric and magnetic field energy. Electrodynamics: Wave equation; Electromagnetic waves; Phasor form of Maxwell's equations.nSolution of the wave equation in 1D free space: Wavelength, wavevector, forward and backward propagating plane waves.Poynting's theorem. Propagation in lossy media, skin depth. Reflection and refraction at planar boundaries, total internal reflection. Solutions of wave equation for various 1D3D problems: Electromagnetic resonators, waveguides periodic media, transmission lines. Formerly
EE 141. Prerequisites: Phys 43 or
EE 42,
CME 100,
CME 102 (recommended)
Terms: Aut

Units: 3

UG Reqs: GER:DBEngrAppSci, WAYFR, WAYSMA

Grading: Letter (ABCD/NP)
Instructors:
Fan, J. (PI)
;
Phan, T. (TA)
EE 178: Probabilistic Systems Analysis
Introduction to probability and statistics and their role in modeling and analyzing real world phenomena. Events, sample space, and probability. Discrete random variables, probability mass functions, independence and conditional probability, expectation and conditional expectation. Continuous random variables, probability density functions, independence and expectation, derived densities. Transforms, moments, sums of independent random variables. Simple random processes. Limit theorems. Introduction to statistics: significance, estimation and detection. Prerequisites: basic calculus.
Terms: Aut, Spr

Units: 4

UG Reqs: GER:DBEngrAppSci

Grading: Letter or Credit/No Credit
Instructors:
Ozgur Aydin, A. (PI)
;
Weissman, T. (PI)
;
Chandak, S. (TA)
...
more instructors for EE 178 »
Instructors:
Ozgur Aydin, A. (PI)
;
Weissman, T. (PI)
;
Chandak, S. (TA)
;
Kalkanli, C. (TA)
;
Reshetova, D. (TA)
EE 180: Digital Systems Architecture
The design of processorbased digital systems. Instruction sets, addressing modes, data types. Assembly language programming, lowlevel data structures, introduction to operating systems and compilers. Processor microarchitecture, microprogramming, pipelining. Memory systems and caches. Input/output, interrupts, buses and DMA. System design implementation alternatives, software/hardware tradeoffs. Labs involve the design of processor subsystems and processorbased embedded systems. Formerly
EE 108B. Prerequisite:
CS107 (required) and
EE108 (recommended but not required).
Terms: Win

Units: 4

UG Reqs: GER:DBEngrAppSci, WAYSMA

Grading: Letter or Credit/No Credit
ENERGY 101: Energy and the Environment (EARTHSYS 101)
Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended:
MATH 21 or 42.
Terms: Win

Units: 3

UG Reqs: GER:DBEngrAppSci, WAYAQR, WAYSMA

Grading: Letter or Credit/No Credit
ENERGY 102: Fundamentals of Renewable Power (EARTHSYS 102)
Do you want a much better understanding of renewable power technologies? Did you know that wind and solar are the fastest growing forms of electricity generation? Are you interested in hearing about the most recent, and future, designs for green power? Do you want to understand what limits power extraction from renewable resources and how current designs could be improved? This course dives deep into these and related issues for wind, solar, biomass, geothermal, tidal and wave power technologies. We welcome all student, from nonmajors to MBAs and grad students. If you are potentially interested in an energy or environmental related major, this course is particularly useful. Recommended:
Math 21 or 42.
Terms: Spr

Units: 3

UG Reqs: GER:DBEngrAppSci, WAYSMA

Grading: Letter or Credit/No Credit
ENERGY 120: Fundamentals of Petroleum Engineering (ENGR 120)
Lectures, problems, field trip. Engineering topics in petroleum recovery; origin, discovery, and development of oil and gas. Chemical, physical, and thermodynamic properties of oil and natural gas. Material balance equations and reserve estimates using volumetric calculations. Gas laws. Single phase and multiphase flow through porous media.
Terms: Aut

Units: 3

UG Reqs: GER:DBEngrAppSci, WAYFR, WAYSMA

Grading: Letter or Credit/No Credit
ENERGY 121: Fundamentals of Multiphase Flow (ENERGY 221)
Multiphase flow in porous media. Wettability, capillary pressure, imbibition and drainage, Leverett Jfunction, transition zone, vertical equilibrium. Relative permeabilities, Darcy's law for multiphase flow, fractional flow equation, effects of gravity, BuckleyLeverett theory, recovery predictions, volumetric linear scaling, JBN and JonesRozelle determination of relative permeability. Frontal advance equation, BuckleyLeverett equation as frontal advance solution, tracers in multiphase flow, adsorption, threephase relative permeabilities.
Terms: Win

Units: 3

UG Reqs: GER:DBEngrAppSci

Grading: Letter (ABCD/NP)
Instructors:
Tchelepi, H. (PI)
;
Khebzegga, O. (TA)
ENERGY 167: Engineering Valuation and Appraisal of Oil and Gas Wells, Facilities, and Properties (ENERGY 267)
Appraisal of development and remedial work on oil and gas wells; appraisal of producing properties; estimation of productive capacity, reserves; operating costs, depletion, and depreciation; value of future profits, taxation, fair market value; original or guided research problems on economic topics with report. Prerequisite: consent of instructor.
Terms: Win

Units: 3

UG Reqs: GER:DBEngrAppSci

Grading: Letter or Credit/No Credit
ENERGY 180: Oil and Gas Production Engineering (ENERGY 280)
Design and analysis of production systems for oil and gas reservoirs. Topics: well completion, singlephase and multiphase flow in wells and gathering systems, artificial lift and field processing, well stimulation, inflow performance. Prerequisite: 120.
Terms: Spr, last offered Spring 2011

Units: 3

UG Reqs: GER:DBEngrAppSci

Grading: Letter (ABCD/NP)
Filter Results: