2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
by subject...

81 - 90 of 168 results for: all courses

EE 134: Introduction to Photonics

Photonics, optical components, and fiber optics. Conceptual and mathematical tools for design and analysis of optical communication, sensor and imaging systems. Experimental characterization of semiconductor lasers, optical fibers, photodetectors, receiver circuitry, fiber optic links, optical amplifiers, and optical sensors. Class project on confocal microscopy or other method of sensing or analyzing biometric data. Laboratory experiments. Prerequisite: EE 102A and one of the following: EE 42, Physics 43, or Physics 63.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter (ABCD/NP)
Instructors: Bowden, A. (PI)

EE 142: Engineering Electromagnetics

Introduction to electromagnetism and Maxwell's equations in static and dynamic regimes. Electrostatics and magnetostatics: Gauss's, Coulomb's, Faraday's, Ampere's, Biot-Savart's laws. Electric and magnetic potentials. Boundary conditions. Electric and magnetic field energy. Electrodynamics: Wave equation; Electromagnetic waves; Phasor form of Maxwell's equations.nSolution of the wave equation in 1D free space: Wavelength, wave-vector, forward and backward propagating plane waves.Poynting's theorem. Propagation in lossy media, skin depth. Reflection and refraction at planar boundaries, total internal reflection. Solutions of wave equation for various 1D-3D problems: Electromagnetic resonators, waveguides periodic media, transmission lines. Formerly EE 141. Pre-requisites: Phys 43 or EE 42, CME 100, CME 102 (recommended)
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-FR, WAY-SMA | Grading: Letter (ABCD/NP)

EE 178: Probabilistic Systems Analysis

Introduction to probability and statistics and their role in modeling and analyzing real world phenomena. Events, sample space, and probability. Discrete random variables, probability mass functions, independence and conditional probability, expectation and conditional expectation. Continuous random variables, probability density functions, independence and expectation, derived densities. Transforms, moments, sums of independent random variables. Simple random processes. Limit theorems. Introduction to statistics: significance, estimation and detection. Prerequisites: basic calculus.
Terms: Aut, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

EE 180: Digital Systems Architecture

The design of processor-based digital systems. Instruction sets, addressing modes, data types. Assembly language programming, low-level data structures, introduction to operating systems and compilers. Processor microarchitecture, microprogramming, pipelining. Memory systems and caches. Input/output, interrupts, buses and DMA. System design implementation alternatives, software/hardware tradeoffs. Labs involve the design of processor subsystems and processor-based embedded systems. Formerly EE 108B. Prerequisite: CS107 (required) and EE108 (recommended but not required).
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

ENERGY 101: Energy and the Environment (EARTHSYS 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended: MATH 21 or 42.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

ENERGY 102: Fundamentals of Renewable Power (EARTHSYS 102)

Do you want a much better understanding of renewable power technologies? Did you know that wind and solar are the fastest growing forms of electricity generation? Are you interested in hearing about the most recent, and future, designs for green power? Do you want to understand what limits power extraction from renewable resources and how current designs could be improved? This course dives deep into these and related issues for wind, solar, biomass, geothermal, tidal and wave power technologies. We welcome all student, from non-majors to MBAs and grad students. If you are potentially interested in an energy or environmental related major, this course is particularly useful. Recommended: Math 21 or 42.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

ENERGY 120: Fundamentals of Petroleum Engineering (ENGR 120)

Lectures, problems, field trip. Engineering topics in petroleum recovery; origin, discovery, and development of oil and gas. Chemical, physical, and thermodynamic properties of oil and natural gas. Material balance equations and reserve estimates using volumetric calculations. Gas laws. Single phase and multiphase flow through porous media.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-FR, WAY-SMA | Grading: Letter or Credit/No Credit

ENERGY 121: Fundamentals of Multiphase Flow (ENERGY 221)

Multiphase flow in porous media. Wettability, capillary pressure, imbibition and drainage, Leverett J-function, transition zone, vertical equilibrium. Relative permeabilities, Darcy's law for multiphase flow, fractional flow equation, effects of gravity, Buckley-Leverett theory, recovery predictions, volumetric linear scaling, JBN and Jones-Rozelle determination of relative permeability. Frontal advance equation, Buckley-Leverett equation as frontal advance solution, tracers in multiphase flow, adsorption, three-phase relative permeabilities.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter (ABCD/NP)

ENERGY 167: Engineering Valuation and Appraisal of Oil and Gas Wells, Facilities, and Properties (ENERGY 267)

Appraisal of development and remedial work on oil and gas wells; appraisal of producing properties; estimation of productive capacity, reserves; operating costs, depletion, and depreciation; value of future profits, taxation, fair market value; original or guided research problems on economic topics with report. Prerequisite: consent of instructor.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

ENERGY 180: Oil and Gas Production Engineering (ENERGY 280)

Design and analysis of production systems for oil and gas reservoirs. Topics: well completion, single-phase and multi-phase flow in wells and gathering systems, artificial lift and field processing, well stimulation, inflow performance. Prerequisite: 120.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter (ABCD/NP)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints