2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 34 results for: ENGR ; Currently searching spring courses. You can expand your search to include all quarters

ENGR 10: Introduction to Engineering Analysis

Integrated approach to the fundamental scientific principles that are the cornerstones of engineering analysis: conservation of mass, atomic species, charge, momentum, angular momentum, energy, production of entropy expressed in the form of balance equations on carefully defined systems, and incorporating simple physical models. Emphasis is on setting up analysis problems arising in engineering. Topics: simple analytical solutions, numerical solutions of linear algebraic equations, and laboratory experiences. Provides the foundation and tools for subsequent engineering courses. Prerequisite: AP Physics and AP Calculus or equivalent.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Cappelli, M. (PI)

ENGR 14: Intro to Solid Mechanics

Introduction to engineering analysis using the principles of engineering solid mechanics. Builds on the math and physical reasoning concepts in Physics 41 to develop skills in evaluation of engineered systems across a variety of fields. Foundational ideas for more advanced solid mechanics courses such as ME80 or CEE101A. Interactive lecture sessions focused on mathematical application of key concepts, with weekly complementary lab session on testing and designing systems that embody these concepts. Limited enrollment, subject to instructor approval. Pre-requisite: Physics 41.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ENGR 15: Dynamics

The application of Newton's Laws to solve 2-D and 3-D static and dynamic problems, particle and rigid body dynamics, freebody diagrams, and equations of motion, with application to mechanical, biomechanical, and aerospace systems. Computer numerical solution and dynamic response. Prerequisites: Calculus (differentiation and integration) such as MATH 41; and ENGR 14 (statics and strength) or a mechanics course in physics such as PHYSICS 41.
Terms: Aut, Spr | Units: 4 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci

ENGR 20: Introduction to Chemical Engineering (CHEMENG 20)

Overview of chemical engineering through discussion and engineering analysis of physical and chemical processes. Topics: overall staged separations, material and energy balances, concepts of rate processes, energy and mass transport, and kinetics of chemical reactions. Applications of these concepts to areas of current technological importance: biotechnology, energy, production of chemicals, materials processing, and purification. Prerequisite: CHEM 31.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci, WAY-AQR
Instructors: Khosla, C. (PI)

ENGR 25B: Biotechnology (CHEMENG 25B)

Biology and chemistry fundamentals, genetic engineering, cell culture, protein production, pharmaceuticals, genomics, viruses, gene therapy, evolution, immunology, antibodies, vaccines, transgenic animals, cloning, stem cells, intellectual property, governmental regulations, and ethics. Prerequisites: CHEM 31 and MATH 41 or equivalent courage.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Swartz, J. (PI)

ENGR 30: Engineering Thermodynamics

The basic principles of thermodynamics are introduced in this course. Concepts of energy and entropy from elementary considerations of the microscopic nature of matter are discussed. The principles are applied in thermodynamic analyses directed towards understanding the performances of engineering systems. Methods and problems cover socially responsible economic generation and utilization of energy in central power generation plants, solar systems, refrigeration devices, and automobile, jet and gas-turbine engines.
Terms: Aut, Win, Spr, Sum | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA, WAY-AQR

ENGR 40M: An Intro to Making: What is EE

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build.
Terms: Aut, Spr | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

ENGR 50: Introduction to Materials Science, Nanotechnology Emphasis

The structure, bonding, and atomic arrangements in materials leading to their properties and applications. Topics include electronic and mechanical behavior, emphasizing nanotechnology, solid state devices, and advanced structural and composite materials.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci, WAY-AQR
Instructors: Sinclair, R. (PI)

ENGR 62: Introduction to Optimization (MS&E 111)

Formulation and analysis of linear optimization problems. Solution using Excel solver. Polyhedral geometry and duality theory. Applications to contingent claims analysis, production scheduling, pattern recognition, two-player zero-sum games, and network flows. Prerequisite: CME 100 or MATH 51.
Terms: Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ENGR 70A: Programming Methodology (CS 106A)

Introduction to the engineering of computer applications emphasizing modern software engineering principles: object-oriented design, decomposition, encapsulation, abstraction, and testing. Uses the Java programming language. Emphasis is on good programming style and the built-in facilities of the Java language. No prior programming experience required. Summer quarter enrollment is limited. Priority given to Stanford students.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: WAY-FR, GER:DB-EngrAppSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints