2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

101 - 110 of 233 results for: all courses

EE 108B: Digital Systems II

The design of processor-based digital systems. Instruction sets, addressing modes, data types. Assembly language programming, low-level data structures, introduction to operating systems and compilers. Processor microarchitecture, microprogramming, pipelining. Memory systems and caches. Input/output, interrupts, buses and DMA. System design implementation alternatives, software/hardware tradeoffs. Labs involve the design of processor subsystems and processor-based embedded systems. Prerequisite: 108A, CS 106B.
Terms: Aut, Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

EE 122A: Analog Circuits Laboratory

Practical applications of analog circuits, including simple amplifiers, filters, oscillators, power supplies, and sensors. Design skills, computer-aided design, and circuit fabrication and debugging. The design process through proposing, designing, simulating, building, debugging, and demonstrating a project. Radio frequency and largely digital projects not suitable for EE 122. Prerequisite: ENGR 40 or equivalent and Laplace Transform working knowledge.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Kovacs, G. (PI)

EE 122B: Introduction to Biomedical Electronics

Key components of modern systems, their application in physiology measurements, and reduction to practice in labs. Fundamentals of analog/digital conversion and filtering techniques for biosignals, typical transducers (biopotential, electrochemical, temperature, pressure, acoustic, movement), and interfacing circuits. Issues of biomedical electronics (safety, noise). Prerequisite: EE122A or equivalent.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA
Instructors: Kovacs, G. (PI)

EE 141: Engineering Electromagnetics

Lumped versus distributed circuits. Transient response of transmission lines with resistive and reactive loads. Reflection, transmission, attenuation and dispersion. Steady-state waves on transmission lines. Standing wave ratio, impedance matching, and power flow. Coulomb's law, electrostatic field, potential and gradient, electric flux and Gauss's Law and divergence. Metallic conductors, Poisson's and Laplace's equations, capacitance, dielectric materials. Electrostatic energy and forces. Steady electric currents, Ohm's Law, Kirchoff's Laws, charge conservation and the continuity equation, Joule's Law. Biot-Savart's law and the static magnetic field. Ampere's Law and curl. Vector magnetic potential and magnetic dipole. Magnetic materials, forces and torques. Faraday's Law, magnetic energy, displacement current and Maxwell's equations. Uniform plane waves. Prerequisites: 102A, MATH 52.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-FR, WAY-SMA
Instructors: Vuckovic, J. (PI)

EESS 41N: The Global Warming Paradox (EARTHSYS 41N)

Preference to freshman. Focus is on the complex climate challenges posed by the substantial benefits of energy consumption, including the critical tension between the enormous global demand for increased human well-being and the negative climate consequences of large-scale emissions of carbon dioxide. Topics include: Earth¿s energy balance; detection and attribution of climate change; the climate response to enhanced greenhouse forcing; impacts of climate change on natural and human systems; and proposed methods for curbing further climate change. Sources include peer-reviewed scientific papers, current research results, and portrayal of scientific findings by the mass media and social networks.
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA

EESS 46N: Exploring the Critical Interface between the Land and Monterey Bay: Elkhorn Slough (EARTHSYS 46N)

Preference to freshmen. Field trips to sites in the Elkhorn Slough, a small agriculturally impacted estuary that opens into Monterey Bay, a model ecosystem for understanding the complexity of estuaries, and one of California's last remaining coastal wetlands. Readings include Jane Caffrey's Changes in a California Estuary: A Profile of Elkhorn Slough. Basics of biogeochemistry, microbiology, oceanography, ecology, pollution, and environmental management.
Last offered: Spring 2013 | UG Reqs: WAY-SMA

EESS 57Q: Climate Change from the Past to the Future (EARTHSYS 57Q)

Preference to sophomores. Numeric models to predict how climate responds to increase of greenhouse gases. Paleoclimate during times in Earth's history when greenhouse gas concentrations were elevated with respect to current concentrations. Predicted scenarios of climate models and how these models compare to known hyperthermal events in Earth history. Interactions and feedbacks among biosphere, hydrosphere, atmosphere, and lithosphere. Topics include long- and short-term carbon cycle, coupled biogeochemical cycles affected by and controlling climate change, and how the biosphere responds to climate change. Possible remediation strategies.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA

EESS 111: Biology and Global Change (BIO 117, EARTHSYS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EESS 117: Earth Sciences of the Hawaiian Islands (EARTHSCI 117, EARTHSYS 117)

Progression from volcanic processes through rock weathering and soil-ecosystem development to landscape evolution. The course starts with an investigation of volcanic processes, including the volcano structure, origin of magmas, physical-chemical factors of eruptions. Factors controlling rock weathering and soil development, including depth and nutrient levels impacting plant ecosystems, are explored next. Geomorphic processes of landscape evolution including erosion rates, tectonic/volcanic activity, and hillslope stability conclude the course. Methods for monitoring and predicting eruptions, defining spatial changes in landform, landform stability, soil production rates, and measuring biogeochemical processes are covered throughout the course. This course is restricted to students accepted into the Earth Systems of Hawaii Program.
Last offered: Autumn 2012 | UG Reqs: WAY-SMA

EESS 151: Biological Oceanography (EARTHSYS 151, EARTHSYS 251, EESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (EESS/ EARTHSYS 152/252). Prerequisites: BIO 43 and EESS 8 or equivalent.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints