2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 12 results for: APPPHYS

APPPHYS 201: Electrons and Photons (PHOTON 201)

Applied Physics Core course appropriate for graduate students and advanced undergraduate students with prior knowledge of elementary quantum mechanics, electricity and magnetism, and special relativity. Interaction of electrons with intense electromagnetic fields from microwaves to x- ray, including electron accelerators, x-ray lasers and synchrotron light sources, attosecond laser-atom interactions, and x-ray matter interactions. Mechanisms of radiation, free-electron lasing, and advanced techniques for generating ultrashort brilliant pulses. Characterization of electronic properties of advanced materials, prospects for single-molecule structure determination using x-ray lasers, and imaging attosecond molecular dynamics.
Terms: Win | Units: 4

APPPHYS 204: Quantum Materials

Applied Physics Core course appropriate for graduate students and advanced undergraduate students with prior knowledge of elementary quantum mechanics. Introduction to materials and topics of current interest. Topics include superconductivity, magnetism, charge and spin density waves, frustration, classical and quantum phase transitions, multiferroics, and interfaces. Prerequisite: elementary course in quantum mechanics.
Terms: Win | Units: 4

APPPHYS 205: Introduction to Biophysics (BIO 126, BIO 226)

Core course appropriate for advanced undergraduate students and graduate students with prior knowledge of calculus and a college physics course. Introduction to how physical principles offer insights into modern biology, with regard to the structural, dynamical, and functional organization of biological systems. Topics include the roles of free energy, diffusion, electromotive forces, non-equilibrium dynamics, and information in fundamental biological processes.
Terms: Win | Units: 3-4

APPPHYS 207: Laboratory Electronics

Lecture/lab emphasizing analog and digital electronics for lab research. RC and diode circuits. Transistors. Feedback and operational amplifiers. Active filters and circuits. Pulsed circuits, voltage regulators, and power circuits. Precision circuits, low-noise measurement, and noise reduction techniques. Circuit simulation tools. Analog signal processing techniques and modulation/demodulation. Principles of synchronous detection and applications of lock-in amplifiers. Common laboratory measurements and techniques illustrated via topical applications. Limited enrollment. Prerequisites: undergraduate device and circuit exposure.
Terms: Win | Units: 4
Instructors: Fox, J. (PI)

APPPHYS 220: Applied Electrodynamics

Techniques for general electrodynamics, illustrated by examples from geophysics, microwave engineering, optical devices, accelerators, antennas, and plasma physics. RF/microwave structure representations, scattering matrices, treatments for periodic systems. Perturbation and variational techniques applied to approximate solutions, fundamentals of numerical techniques. Analysis methods via expansions in terms of natural modes. Introduction to finite element methods via the application of variational techniques. Laboratory experiments including time domain and frequency domain methods. Solutions of inverse electrodynamic problems via perturbation techniques coupled with lab measurements (such as estimation of a physical structure via experimental measurements and formal models). Prerequisites: PHYSICS 121, MATH 106 and MATH 132, or equivalent experience.
Terms: Win | Units: 3
Instructors: Tantawi, S. (PI)

APPPHYS 290: Directed Studies in Applied Physics

Special studies under the direction of a faculty member for which academic credit may properly be allowed. May include lab work or directed reading.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

APPPHYS 304: Lasers Laboratory

Terms: Win | Units: 4
Instructors: Byer, R. (PI)

APPPHYS 390: Dissertation Research

Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

APPPHYS 470: Condensed Matter Seminar

Current research and literature; offered by faculty, students, and outside specialists. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit

APPPHYS 473B: Topics in Condensed Matter Physics: Quantum Matter Meets Quantum Optics

Graduate seminar to survey the contemporary literature on emerging topics in light-matter interactions, including novel optical spectroscopy approaches to the study of material properties and exotic optical properties of novel materials.
Terms: Win | Units: 3 | Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints