2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

61 - 70 of 131 results for: all courses

ENERGY 104: Sustainable Energy for 9 Billion

This course explores the transition to a sustainable energy system at large scales (national and global), and over long time periods (decades). Explores the drivers of global energy demand and the fundamentals of technologies that can meet this demand sustainably. Focuses on constraints affecting large-scale deployment of technologies, as well as inertial factors affecting this transition. Problems will involve modeling global energy demand, deployment rates for sustainable technologies, technological learning and economics of technical change. Recommended: ENERGY 101, 102.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR

ENGLISH 184E: Literary Text Mining

This course will train students in applied methods for computationally analyzing texts for humanities research. The skills students will gain will include basic programming for textual analysis, applied statistical evaluation of results and the ability to present these results within a formal research paper or presentation. As an introduction, students in this course will also learn the prerequisite steps of such an analysis including corpus selection and cleaning, metadata collection, and selecting and creating an appropriate visualization for the results.
Terms: Spr | Units: 5 | UG Reqs: GER:DB-Hum, WAY-AQR

ENGR 20: Introduction to Chemical Engineering (CHEMENG 20)

Overview of chemical engineering through discussion and engineering analysis of physical and chemical processes. Topics: overall staged separations, material and energy balances, concepts of rate processes, energy and mass transport, and kinetics of chemical reactions. Applications of these concepts to areas of current technological importance: biotechnology, energy, production of chemicals, materials processing, and purification. Prerequisite: CHEM 31.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci, WAY-AQR

ENGR 30: Engineering Thermodynamics

The basic principles of thermodynamics are introduced in this course. Concepts of energy and entropy from elementary considerations of the microscopic nature of matter are discussed. The principles are applied in thermodynamic analyses directed towards understanding the performances of engineering systems. Methods and problems cover socially responsible economic generation and utilization of energy in central power generation plants, solar systems, refrigeration devices, and automobile, jet and gas-turbine engines.
Terms: Aut, Win, Spr, Sum | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA, WAY-AQR

ENGR 40: Introductory Electronics

Not offered. Students wishing to complete the equivalent of ENGR 40 should enroll in both ENGR 40A and ENGR 40B.
Last offered: Winter 2016 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

ENGR 40A: Introductory Electronics

First portion of the former ENGR 40, for students not pursuing degree in Electrical Engineering. Instruction to be completed in the first seven weeks of the quarter. Students wishing to complete the equivalent of ENGR 40 should enroll in both ENGR 40A and ENGR 40B. Overview of electronic circuits and applications. Electrical quantities and their measurement, including operation of the oscilloscope. Basic models of electronic components including resistors, capacitors, inductors, and the operational amplifier. Lab. Lab assignments. Enrollment limited to 300.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

ENGR 50: Introduction to Materials Science, Nanotechnology Emphasis

The structure, bonding, and atomic arrangements in materials leading to their properties and applications. Topics include electronic and mechanical behavior, emphasizing nanotechnology, solid state devices, and advanced structural and composite materials.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci, WAY-AQR

ENGR 50M: Introduction to Materials Science, Biomaterials Emphasis

Topics include: the relationship between atomic structure and macroscopic properties of man-made and natural materials; mechanical and thermodynamic behavior of surgical implants including alloys, ceramics, and polymers; and materials selection for biotechnology applications such as contact lenses, artificial joints, and cardiovascular stents. No prerequisite.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

ENGR 90: Environmental Science and Technology (CEE 70)

Introduction to environmental quality and the technical background necessary for understanding environmental issues, controlling environmental degradation, and preserving air and water quality. Material balance concepts for tracking substances in the environmental and engineering systems.
Terms: Win, Sum | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR
Instructors: Kopperud, R. (PI)

ENGR 155C: Introduction to Probability and Statistics for Engineers (CME 106)

Probability: random variables, independence, and conditional probability; discrete and continuous distributions, moments, distributions of several random variables. Topics in mathematical statistics: random sampling, point estimation, confidence intervals, hypothesis testing, non-parametric tests, regression and correlation analyses; applications in engineering, industrial manufacturing, medicine, biology, and other fields. Prerequisite: CME 100/ENGR154 or MATH 51 or 52.
Terms: Win, Sum | Units: 4 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints