2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

111 - 120 of 187 results for: all courses

ESS 155: Science of Soils (EARTHSYS 155)

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Terms: Spr | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Fendorf, S. (PI)

ESS 164: Fundamentals of Geographic Information Science (GIS) (EARTHSYS 144)

Survey of geographic information including maps, satellite imagery, and census data, approaches to spatial data, and tools for integrating and examining spatially-explicit data. Emphasis is on fundamental concepts of geographic information science and associated technologies. Topics include geographic data structure, cartography, remotely sensed data, statistical analysis of geographic data, spatial analysis, map design, and geographic information system software. Computer lab assignments. All students are required to attend a weekly lab session.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit

ESS 241: Remote Sensing of the Oceans (EARTHSYS 141, EARTHSYS 241, ESS 141, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR | Grading: Letter or Credit/No Credit
Instructors: Arrigo, K. (PI)

GEOPHYS 20N: Predicting Volcanic Eruptions

The physics and chemistry of volcanic processes and modern methods of volcano monitoring. Volcanoes as manifestations of the Earth's internal energy and hazards to society. How earth scientists better forecast eruptive activity by monitoring seismic activity, bulging of the ground surface, and the discharge of volcanic gases, and by studying deposits from past eruptions. Focus is on the interface between scientists and policy makers and the challenges of decision making with incomplete information. Field trip to Mt. St. Helens, site of the 1980 eruption.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Segall, P. (PI)

GEOPHYS 50N: Planetary Habitability, World View, and Sustainability

Sustainability lessons from the geological past Life on Earth has partially perished in sudden mass extinctions several time over the Earth's history. Threats include actions of our own volition, including fossil fuel burning as well as natural events, including the impact of large asteroids. The end Permian 250 million years ago and end Paleocene 55 million years ago extinctions involved natural burning of fossil fuels. The 65 million year ago end Cretaceous extinction involved the impact of and asteroid and possibly fossil fuel burning. Related sustainability topics in the popular press will be discussed as they arise. Student pairs lead discussions on topics on how humanity might avert these catastrophes. Offered occasionally.
Terms: not given this year | Units: 3 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit

GEOPHYS 70: The Water Course (EARTHSYS 104)

The Central Valley of California provides a third of the produce grown in the U.S., but has a desert climate, thus raising concerns about both food and water security. The pathway that water takes rainfall to the irrigation of fields (the water course) determines the quantity and quality of the available water. Working with various data sources (remote sensing, gauges, wells) allows us to model the water budget in the valley and explore the way in which recent droughts and increasing demand are impacting freshwater supplies.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 110: Introduction to the foundations of contemporary geophysics (EARTHSYS 110)

Introduction to the foundations of contemporary geophysics. Topics drawn from broad themes in: whole Earth geodynamics, geohazards, natural resources, and enviroment. In each case the focus is on how the interpretation of a variety of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetics, and remote sensing) can be used to provide fundamental insight into the behavior of the Earth. Prerequisite: CME 100 or MA TH 51, or co-registration in either.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 120: Ice, Water, Fire (GEOPHYS 220)

Introductory application of continuum mechanics to ice sheets and glaciers, water waves and tsunamis, and volcanoes. Emphasis on physical processes and mathematical description using balance of mass and momentum, combined with constitutive equations for fluids and solids. Designed for undergraduates with no prior geophysics background; also appropriate for beginning graduate students. Prerequisites: CME 100 or MATH 52 and PHYSICS 41 (or equivalent).
Terms: given next year | Units: 3-5 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 130: Introductory Seismology

Introduction to seismology including: elasticity and the wave equation, P, S, and surface waves, dispersion, ray theory, reflection and transmission of seismic waves, seismic imaging, large-scale Earth structure, earthquake location, earthquake statistics and forecasting, magnitude scales, seismic source theory.
Terms: not given this year | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 141: Remote Sensing of the Oceans (EARTHSYS 141, EARTHSYS 241, ESS 141, ESS 241)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR | Grading: Letter or Credit/No Credit
Instructors: Arrigo, K. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints