2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

51 - 60 of 264 results for: all courses

BIOE 103B: Systems Physiology and Design

*ONLINE Offering of BIOE 103. This pilot class, BIOE103B, is an entirely online offering with the same content, learning goals, and prerequisites as BIOE 103. Students attend class by watching videos and completing assignments remotely. Students may attend recitation and office hours in person, but cannot attend the BIOE103 in-person lecture due to room capacity restraints.* Physiology of intact human tissues, organs, and organ systems in health and disease, and bioengineering tools used (or needed) to probe and model these physiological systems. Topics: Clinical physiology, network physiology and system design/plasticity, diseases and interventions (major syndromes, simulation, and treatment, instrumentation for intervention, stimulation, diagnosis, and prevention), and new technologies including tissue engineering and optogenetics. Discussions of pathology of these systems in a clinical-case based format, with a view towards identifying unmet clinical needs. Learning computational skills that not only enable simulation of these systems but also apply more broadly to biomedical data analysis. Prerequisites: CME 102; PHYSICS 41; BIO 82, BIO 84. strongly recommended PHYSICS 43. Enrollment with Instructor approval
Terms: Spr | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)

BIOE 123: Biomedical System Prototyping Lab

The Bioengineering System Prototyping Laboratory is a fast-paced, team-based system engineering experience, in which teams of 2-3 students design and build a fermenter that meets a set of common requirements along with a set of unique team-determined requirements. Students learn-by-doing hands-on skills in electronics and mechanical design and fabrication. Teams also develop process skills and an engineering mindset by aligning specifications with requirements, developing output metrics and measuring performance, and creating project proposals and plans. The course culminates in demonstration of a fully functioning fermenter that meets the teams' self-determined metrics. n nLearning goals: 1) Design, fabricate, integrate, and characterize practical electronic and mechanical hardware systems that meet clear requirements in the context of Bioengineering (i.e., build something that works). 2) Use prototyping tools, techniques, and instruments, including: CAD, 3D printing, laser cutting, m more »
The Bioengineering System Prototyping Laboratory is a fast-paced, team-based system engineering experience, in which teams of 2-3 students design and build a fermenter that meets a set of common requirements along with a set of unique team-determined requirements. Students learn-by-doing hands-on skills in electronics and mechanical design and fabrication. Teams also develop process skills and an engineering mindset by aligning specifications with requirements, developing output metrics and measuring performance, and creating project proposals and plans. The course culminates in demonstration of a fully functioning fermenter that meets the teams' self-determined metrics. n nLearning goals: 1) Design, fabricate, integrate, and characterize practical electronic and mechanical hardware systems that meet clear requirements in the context of Bioengineering (i.e., build something that works). 2) Use prototyping tools, techniques, and instruments, including: CAD, 3D printing, laser cutting, microcontrollers, and oscilloscopes. 3) Create quantitative system specifications and test measurement plans to demonstrate that a design meets user requirements. 4) Communicate design elements, choices, specifications, and performance through design reviews and written reports. 5) Collaborate as a team member on a complex system design project (e.g., a fermenter). n nLimited enrollment, with priority for Bioengineering undergraduates. Prerequisites: Physics 43, or equivalent. Experience with Matlab and/or Python is recommended.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA | Grading: Letter (ABCD/NP)

BIOE 140: Physical Biology of Macromolecules

Principles of statistical physics, thermodynamics, and kinetics with applications to molecular biology. Topics include entropy, temperature, chemical forces, enzyme kinetics, free energy and its uses, self assembly, cooperative transitions in macromolecules, molecular machines, feedback, and accurate replication. Prerequisites: MATH 19, 20, 21; CHEM 31A, B (or 31X); strongly recommended: PHYSICS 41, CME 100 or MATH 51, and CME 106; or instructor approval.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: Prakash, M. (PI)

BIOHOPK 14: Bio-logging and Bio-telemetry

Bio-logging is a rapidly growing discipline that includes diverse fields such as consumer electronics, medicine, and marine biology. The use of animal-attached digital tags is a powerful approach to study the movement and ecology of individuals over a wide range of temporal and spatial scales. This course is an introduction to bio-logging methods and analysis. Using whales as a model system, students will learn how use multi-sensor tags to study behavioral biomechanics.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)

BIOHOPK 47: Introduction to Research in Ecology and Ecological Physiology

This course is a field-based inquiry into rocky intertidal shores that introducesnstudents to ecology and environmental physiology and the research methods used to study them. Students will learn how to detect patterns quantitatively in nature through appropriate sampling methods & statistical analysis. Following exploration of appropriate background material in class and through exploration of the scientific literature, students will learn how to formulate testable hypotheses regarding the underlying causes of the patterns they discern. A variety of different aspects of ecology and physiology will be investigated cooperatively by the students during the quarter, culminating in development of an individual final paper in the form of a research proposal based on data collected during the course. The course will provide a broad conceptual introduction to the underlying biological principles that influence adaptation to the planet¿s dynamic habitats, as well as inquiry-based experience in how to explore and understand complex systems in nature. nThis course fulfills the same laboratory requirement as BIO 47. Satisfies WIM in Biology.
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

BIOHOPK 150H: Ecological Mechanics (BIOHOPK 250H)

(Graduate students register for 250H.) The principles of life's physical interactions. We will explore basic physics. fluid mechanics, thermal dynamics, and materials science to see how the principles of these fields can be used to investigate ecology at levels from the individual to the community. Topics include: diffusion, boundary layers, fluid-dynamic forces, locomotion, heat-budget models, fracture mechanics, adhesion, beam theory, the statistics of extremes, and the theory of self-organization. Open to students from all backgrounds. Some familiarity with basic physics and calculus advantageous but not necessary.
Terms: given next year, last offered Spring 2016 | Units: 3 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit

BIOHOPK 154H: Animal Diversity: An Introduction to Evolution of Animal Form and Function from Larvae to Adults (BIOHOPK 254H)

Survey of invertebrate diversity, emphasizing form and function of both adult and larval life history stages. Focuses on how morphology, life histories, and development contribute to current views of the evolutionary diversification of multicellular animals. Labs are a hands-on exploration of animal diversity using local marine species as examples, as well as techniques of obtaining, handling, and maintaining larvae from early development through settlement. Lectures, labs, plus field trips. Satisfies Central Menu Area 3 for Bio majors. Prerequisite: Biology core or consent of instructors.
Terms: not given this year, last offered Winter 2015 | Units: 7 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit

BIOHOPK 155H: Developmental Biology and Evolution (BIOHOPK 255H)

(Graduate students register for 255) This course focusses on how animals form their basic body plans; from the formation of their germ layers; ectoderm, endoderm and mesoderm, to how they are organized along the main developmental axes; the anteroposterior and dorsoventral axes. The course will focus in part on the molecular mechanisms that underlie these developmental decisions from work carried out in established developmental model species. However, we will also explore the current understanding of how these mechanisms evolved from new insights from emerging models representing a broad range of animal phyla. The setting at Hopkins Marine Station will allow us to carry out experiments from animals collected in the field, and the course will involve a substantial lab component to complement concepts and approaches presented in lecture. nPre-requisites : Biocore or by permission of instructor
Terms: not given this year, last offered Winter 2017 | Units: 4 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit

BIOHOPK 161H: Invertebrate Zoology (BIOHOPK 261H)

(Graduate students register for 261H.) Survey of invertebrate diversity emphasizing form and function in a phylogenetic framework. Morphological diversity, life histories, physiology, and ecology of the major invertebrate groups, concentrating on local marine forms as examples. Current views on the phylogenetic relationships and evolution of the invertebrates. Lectures, lab, plus field trips. Satisfies Central Menu Area 3 for Bio majors.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Watanabe, J. (PI)

BIOHOPK 163H: Oceanic Biology (BIOHOPK 263H)

(Graduate students register for 263H.) How the physics and chemistry of the oceanic environment affect marine plants and animals. Topics: seawater and ocean circulation, separation of light and nutrients in the two-layered ocean, oceanic food webs and trophic interactions, oceanic environments, biogeography, and global change. Lectures, discussion, and field trips. Satisfies Central Menu Area 4 for Bio majors. Recommended: PHYSICS 21 or 51, CHEM 31, or consent of instructor.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints