2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 41 results for: BIO

BIO 3: Frontiers in Marine Biology

An introduction to contemporary research in marine biology, including ecology, conservation biology, environmental toxicology, behavior, biomechanics, evolution, neurobiology, and molecular biology. Emphasis is on new discoveries and the technologies used to make them. Weekly lectures by faculty from the Hopkins Marine Station.
Terms: Aut | Units: 1

BIO 11N: Biotechnology in Everyday Life

Preference to freshmen. The science that makes transgenic plants and animals possible. Current and future applications of biotechnology and the ethical issues raised.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Walbot, V. (PI)

BIO 12N: Sensory Ecology of Marine Animals

Animals living in the oceans experience a highly varied range of environmental stimuli. An aquatic lifestyle requires an equally rich range of sensory adaptations, including some that are totally foreign to us. In this course we will examine sensory system in marine animals from both an environmental and behavioral perspective and from the point of view of neuroscience and information systems engineering.
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA
Instructors: Thompson, S. (PI)

BIO 15N: Environmental Literacy

Preference to freshmen. Lack of public understanding of the details of most environmental problems is cited as a cause of environmental deterioration. Good citizenship requires literacy about the elements of the scientific and decision making processes that accompany most environmental issues: what can happen, what are the odds, how can the credibility of sources of expertise be assessed, which components of environmental debates deal with factual and theoretical issues, and which are political value judgments?
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Root, T. (PI)

BIO 26N: Maintenance of the Genome

Preference to freshmen. The precious blueprint for life is entrusted to the genomic DNA molecules in all living cells. Multiple strategies have evolved to prevent the deleterious consequences from endogenous DNA alterations and damage from radiation or genotoxic chemicals in the environment. In this seminar you will learn about the remarkable systems that scan cellular DNA for alterations and make repairs to ensure genomic stability. Deficiencies in DNA repair have been implicated in many hereditary diseases involving developmental defects, premature aging, and/or predisposition to cancer. An understanding of DNA repair mechanisms is important for advances in the fields of cancer biology, neurobiology, and gerontology. Background readings, introductory lectures, student presentations, short term paper.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Hanawalt, P. (PI)

BIO 34N: Hunger

The biology of hunger and satiety, disease states that disrupt normal responses to hunger and satiety, starvation responses and adaptations to starvation in a variety of organisms, food production and distribution mechanisms, historic famines and their causes, the challenges of providing adequate food and energy for the Earth's growing population, local and global efforts to alleviate hunger, and hunger in fiction.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Barton, K. (PI)

BIO 41: Genetics, Biochemistry, and Molecular Biology

Emphasis is on macromolecules (proteins, lipids, carbohydrates, and nucleic acids) and how their structure relates to function and higher order assembly; molecular biology, genome structure and dynamics, gene expression from transcription to translation. Prerequisites: CHEM 31X (or 31A,B), 33. Recommended: CHEM 35; MATH 19, 20, 21 or 41, 42.
Terms: Aut | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 44X: Core Molecular Biology Laboratory

Investigate yeast strains that are engineered to express the human protein, p53, and use modern molecular methods to identify the functional consequences of p53 mutations isolated from tumor cells. Learn about the protein's role as a tumor suppressor through lectures and by reading and discussing journal articles. Use molecular visualization programs to examine the structure of wild type and mutant p53 proteins. Formulate a testable hypothesis and assay the ability of mutant p53 to direct expression of several reporter genes. During guided reflection, formulate further analyses to determine whether mutant p53 is present in the cell, can bind to DNA, and/or can enter the nucleus. Conduct lab experiments, present findings through a team oral presentation, as well as a scientific poster. Prerequisites: CHEM 31X, or 31A,B, and 33; concurrent or past enrollment in Biology or Human Biology core. 44X,Y should be taken sequentially in the same year, preferably as sophomores, to prepare for internships. Preference given to juniors and seniors in fall quarter, preference given to sophomores in winter quarter. Lab fee. Information about this class is available at http://bio44.stanford.edu.
Terms: Aut, Win | Units: 5 | UG Reqs: WAY-SMA

BIO 101: Ecology

The principles of ecology. Topics: interactions of organisms with their environment, dynamics of populations, species interactions, structure and dynamics of ecological communities, biodiversity. Half-day field trip required. Satisfies Central Menu Area 4. Prerequisite: 43, or consent of instructor. Recommended: statistics.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci
Instructors: Peay, K. (PI)

BIO 107: Human Physiology Laboratory

This laboratory course is inquiry based, so the subject matter of the course will change in successive years. In 2013-14, the question to be researched will be, during exercise (physical work): "Is lactate a cause or consequence of muscle fatigue?" Students must be willing to participate both as experimenter and as subject, and be available for all discussion and lab sessions for the entire quarter. Since many experiments will involve exercise routines, students must be in good physical condition and sign a medical consent form. Prerequisite is Bio 42 or HumBio 4A. Satisfies WIM in biologynnCourse will be offered in Fall 2013 and Spring 2014. Enrollment for each course is limited to 16 students by application.
Terms: Aut, Spr | Units: 4
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints