2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

21 - 30 of 66 results for: CHEM ; Currently searching offered courses. You can also include unoffered courses

CHEM 151: Inorganic Chemistry I

Bonding, stereochemical, and symmetry properties of discrete inorganic molecules are covered along with their mechanisms of ligand and electron exchange. Density function calculations are extensively used in these analyses in computer and problem set exercises. Prerequisites: CHEM 33
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci

CHEM 153: Inorganic Chemistry II

Learn how basic concepts in inorganic chemistry can be applied to materials of all dimensionalities. Specific topics will include: symmetry (group theory), bonding models (crystal field theory, valence bond theory, molecular orbital theory, and the Bloch theorem) and electronic structure, and properties/reactivity of molecules and extended solids. Prerequisites: CHEM 151 and either CHEM 173 or CHEM 171 for students who took CHEM 171 in Spring 2021 or later.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci

CHEM 161: Computational Chemistry (CHEM 261)

Introduction to computational chemistry methods and tools that can be used to interpret and guide experimental research. Project based and hands-on experience with electronic structure calculations, obtaining minimum energy structures and reaction pathways, molecular simulation and modeling. Prerequisite: knowledge of undergraduate level quantum mechanics at the level of CHEM 171.
Terms: Win | Units: 3

CHEM 171: Foundations of Physical Chemistry

Quantum and statistical thermodynamics: obtaining quantum mechanical energy levels and connecting them to thermodynamic properties using statistical mechanics. Emphasis will be on quantum mechanics of ideal systems (particle in a box, particle on a ring, harmonic oscillator, rigid rotor, and hydrogen atom) and their connection to and uses in thermodynamics (laws of thermodynamics, properties of gases and thermal motion, and chemical equilibria). Homeworks and discussion sections will employ the Python programming language for hands-on experience with simulating chemical systems. Prerequisites: CHEM 31B or CHEM 31M; PHYS 41; CS106A; and MATH 51, MATH 61CM, MATH 61DM or CME 100.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci

CHEM 173: Physical Chemistry II

Introduction to quantum chemistry: the basic principles and applications of quantum theory, Dirac notation, momentum of a free particle and wave packets, the uncertainty principle, time independent and time dependent perturbation theory, harmonic oscillator in molecules and solids, absorption and emission spectroscopy, the variational method, atomic energy calculations, and introduction to basic computational chemistry methods. Prerequisites: CHEM 171; PHYSICS 43.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci

CHEM 174: Physical chemistry laboratory I (CHEM 274)

Introduction to modern electrochemical measurement in a hands-on, laboratory setting. Students will assemble simple electrochemical cells and build simple circuits to digitize the data they collect. Students will work with reference, working, and counter electrodes with macro, micro and ultramicro geometries, salt bridges, ion-selective membranes, electrometers, and potentiostats. Prerequisites: CHEM 171 or equivalent.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci

CHEM 175: Physical Chemistry III

Molecular theory of kinetics and statistical mechanics: transport and reactions in gases and liquids, ensembles and the Boltzmann distribution law, partition functions, molecular simulation, structure and dynamics of liquids. Diffusion and activation limited reactions, potential energy surfaces, collision theory and transition-state theory. Prerequisites: either CHEM 173 or CHEM 171.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci

CHEM 176: Spectroscopy Laboratory

Use of spectroscopic instrumentation to obtain familiarity with important types of spectrometers and spectroscopic methods and to apply them to study molecular properties and time dependent processes. Methods include electronic ultraviolet/ visible absorption, fast fluorescence with time correlated single photon counting, Raman and fluorescence microscopy, Fourier transform infrared absorption, and nuclear magnetic resonance. Prerequisite: CHEM 131; CHEM 173 or CHEM 171 for students who took CHEM 171 in Spring 2021 or later.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci

CHEM 181: Biochemistry I (CHEMENG 181, CHEMENG 281)

Structure and function of major classes of biomolecules, including proteins, carbohydrates and lipids. Mechanistic analysis of properties of proteins including catalysis, signal transduction and membrane transport. Students will also learn to critically analyze data from the primary biochemical literature. Satisfies Central Menu Area 1 for Bio majors. Prerequisites: Chem 121.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci

CHEM 183: Biochemistry II (CHEMENG 183, CHEMENG 283)

Focus on metabolic biochemistry: the study of chemical reactions that provide the cell with the energy and raw materials necessary for life. Topics include glycolysis, gluconeogenesis, the citric acid cycle, oxidative phosphorylation, photosynthesis, the pentose phosphate pathway, and the metabolism of glycogen, fatty acids, amino acids, and nucleotides as well as the macromolecular machines that synthesize RNA, DNA, and proteins. Medical relevance is emphasized throughout. Satisfies Central Menu Area 1 for Bio majors. Prerequisite: CHEM 181 or CHEM 141 or CHEMENG 181/281.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints