2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

131 - 140 of 228 results for: all courses

EESS 38N: The Worst Journey in the World: The Science, Literature, and History of Polar Exploration (EARTHSYS 38N, GES 38N)

This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March.
Last offered: Winter 2014 | UG Reqs: GER: DB-NatSci

EESS 56Q: Changes in the Coastal Ocean: The View From Monterey and San Francisco Bays (EARTHSYS 56Q)

Preference to sophomores. Recent changes in the California current, using Monterey Bay as an example. Current literature introduces principles of oceanography. Visits from researchers from MBARI, Hopkins, and UCSC. Optional field trip to MBARI and Monterey Bay.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Dunbar, R. (PI)

EESS 111: Biology and Global Change (BIO 117, EARTHSYS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EESS 141: Remote Sensing of the Oceans (EARTHSYS 141, EARTHSYS 241, EESS 241, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR

EESS 148: Introduction to Physical Oceanography (CEE 164, CEE 262D, EARTHSYS 164)

The dynamic basis of oceanography. Topics: physical environment; conservation equations for salt, heat, and momentum; geostrophic flows; wind-driven flows; the Gulf Stream; equatorial dynamics and ENSO; thermohaline circulation of the deep oceans; and tides. Prerequisite: PHYSICS 41 (formerly 53).
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci
Instructors: Fong, D. (PI)

EESS 155: Science of Soils (EARTHSYS 155)

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Terms: Spr | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EESS 156: Soil and Water Chemistry (EARTHSYS 156, EARTHSYS 256, EESS 256)

(Graduate students register for 256.) Practical and quantitative treatment of soil processes affecting chemical reactivity, transformation, retention, and bioavailability. Principles of primary areas of soil chemistry: inorganic and organic soil components, complex equilibria in soil solutions, and adsorption phenomena at the solid-water interface. Processes and remediation of acid, saline, and wetland soils. Recommended: soil science and introductory chemistry and microbiology.
Last offered: Winter 2014 | UG Reqs: GER: DB-NatSci, WAY-SMA

EESS 164: Fundamentals of Geographic Information Science (GIS) (EARTHSYS 144)

Survey of geographic information including maps, satellite imagery, and census data, approaches to spatial data, and tools for integrating and examining spatially-explicit data. Emphasis is on fundamental concepts of geographic information science and associated technologies. Topics include geographic data structure, cartography, remotely sensed data, statistical analysis of geographic data, spatial analysis, map design, and geographic information system software. Computer lab assignments.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci

EESS 241: Remote Sensing of the Oceans (EARTHSYS 141, EARTHSYS 241, EESS 141, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR

ENGR 31: Chemical Principles with Application to Nanoscale Science and Technology

Preparation for engineering disciplines emphasizing modern technological applications of solid state chemistry. Topics include: crystallography; chemical kinetics and equilibria; thermodynamics of phase changes and reaction; quantum mechanics of chemical bonding, molecular orbital theory, and electronic band structure of crystals; and the materials science of basic electronic and photonic devices. Prerequisite: AP 4 or 5 Chemistry, or equivalent, or successful completion of CHEM 31x placement test, or college chemistry background in stoichiometry, periodicity, Lewis and VSEPR structures, dissolution/precipitation and acid/base reactions, gas laws, and phase behavior.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: McIntyre, P. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints