2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

121 - 130 of 195 results for: ME

ME 346A: Introduction to Statistical Mechanics

The main purpose of this course is to provide students with enough statistical mechanics background to the Molecular Simulations classes ( ME 346B,C), including the fundamental concepts such as ensemble, entropy, and free energy, etc. The main theme of this course is how the laws at the macroscale (thermodynamics) can be obtained by analyzing the spontaneous fluctuations at the microscale (dynamics of molecules). Topics include thermodynamics, probability theory, information entropy, statistical ensembles, phase transition and phase equilibrium. Recommended: PHYSICS 110 or equivalent.
Last offered: Winter 2022

ME 346B: Introduction to Molecular Simulations

Algorithms of molecular simulations and underlying theories. Molecular dynamics, time integrators, modeling thermodynamic ensembles (NPT, NVT). Monte Carlo simulations. Applications in solids, liquids, polymers, phase transitions, and combination with machine learning tools. Examples provided in easy-to-use Python Notebooks. Final projects.
Last offered: Spring 2021

ME 346C: Advanced Techniques for Molecular Simulations

Advanced methods for computer simulations of solids and molecules. Methods for long-range force calculation, including Ewald methods and fast multipole method. Methods for free energy calculation, such as thermodynamic integration. Methods for predicting rates of rare events (e.g. nucleation), including nudged elastic band method and umbrella sampling method. Students will work on projects in teams.
Last offered: Summer 2020

ME 349: The Science and the Practice of Metal 3D Printing

Physical and metallurgical principles involved in metal 3D printing: laser types and optics, light interaction with matter, melt pool dynamics, solidification and microstructure generation. Engineering practice: powder preparation, part characterization, material printing strategy exploration, simulation tools for innovative designs and process physical modeling. Some of the lectures will be delivered by leading experts in industry to highlight current challenges and opportunities. Students design, prepare and print a part in the laboratory part of the class. Prerequisite: an UG degree in ME or Materials Science.
Last offered: Winter 2023

ME 350: Plasma Science and Technology Seminar (AA 296)

Guest speakers present research related to plasma science and engineering, ranging from fundamental plasma physics to industrial applications of plasma.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit (up to 99 units total)

ME 351A: Fluid Mechanics

Exact and approximate analysis of fluid flow covering kinematics, global and differential equations of mass, momentum, and energy conservation. Forces and stresses in fluids. Euler's equations and the Bernoulli theorem applied to inviscid flows. Vorticity dynamics. Topics in irrotational flow: stream function and velocity potential for exact and approximate solutions; superposition of solutions; complex potential function; circulation and lift. Some boundary layer concepts.
Terms: Aut | Units: 3

ME 351B: Fluid Mechanics

Laminar viscous fluid flow. Governing equations, boundary conditions, and constitutive laws. Exact solutions for parallel flows. Creeping flow limit, lubrication theory, and boundary layer theory including free-shear layers and approximate methods of solution; boundary layer separation. Introduction to stability theory and transition to turbulence, and turbulent boundary layers. Prerequisite: 351A.
Terms: Win | Units: 3

ME 352A: Radiative Heat Transfer

The fundamentals of thermal radiation heat transfer; blackbody radiation laws; radiative properties of non-black surfaces; analysis of radiative exchange between surfaces and in enclosures; combined radiation, conduction, and convection; radiative transfer in absorbing, emitting, and scattering media. Advanced material for students with interests in heat transfer, as applied in high-temperature energy conversion systems. Take 352B,C for depth in heat transfer. Prerequisites: graduate standing and undergraduate course in heat transfer. Recommended: computer skills.
Last offered: Autumn 2018

ME 352B: Fundamentals of Heat Conduction

Physical description of heat conduction in solids, liquids, and gases. The heat diffusion equation and its solution using analytical and numerical techniques. Data and microscopic models for the thermal conductivity of solids, liquids, and gases, and for the thermal resistance at solid-solid and solid-liquid boundaries. Introduction to the kinetic theory of heat transport, focusing on applications for composite materials, semiconductor devices, micromachined sensors and actuators, and rarefied gases. Prerequisite: consent of instructor.
Last offered: Winter 2020

ME 352C: Convective Heat Transfer

Prediction of heat and mass transfer rates based on analytical and numerical solutions of the governing partial differential equations. Heat transfer in fully developed pipe and channel flow, pipe entrance flow, laminar boundary layers, and turbulent boundary layers. Superposition methods for handling non-uniform wall boundary conditions. Approximate models for turbulent flows. Comparison of exact and approximate analyses to modern experimental results. General introduction to heat transfer in complex flows. Prerequisite: 351A or equivalent.
Last offered: Spring 2022
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints