2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 84 results for: CS

CS 1C: Introduction to Computing at Stanford

For those with limited experience with computers or who want to learn more about Stanford's computing environment. Topics include: computer maintenance and security, computing resources, Internet privacy, and copyright law. One-hour lecture/demonstration in dormitory clusters prepared and administered weekly by the Resident Computer Consultant (RCC). Final project. Not a programming course.
Terms: Aut | Units: 1
Instructors: Smith, S. (PI)

CS 1U: Practical Unix

A practical introduction to using the Unix operating system with a focus on Linux command line skills. Class will consist of video tutorials and weekly hands-on lab sections. The time listed on AXESS is for the first week's logistical meeting only. Topics include: grep and regular expressions, ZSH, Vim and Emacs, basic and advanced GDB features, permissions, working with the file system, revision control, Unix utilities, environment customization, and using Python for shell scripts. Topics may be added, given sufficient interest. Course website: http://cs1u.stanford.edu
Terms: Aut, Win, Spr | Units: 1

CS 9: Problem-Solving for the CS Technical Interview

This course will prepare students to interview for software engineering and related internships and full-time positions in industry. Drawing on multiple sources of actual interview questions, students will learn key problem-solving strategies specific to the technical/coding interview. Students will be encouraged to synthesize information they have learned across different courses in the major. Emphasis will be on the oral and combination written-oral modes of communication common in coding interviews, but which are unfamiliar settings for problem solving for many students. Prerequisites: CS 106B or X.
Terms: Aut | Units: 1

CS 42: Callback Me Maybe: Contemporary Javascript

Introduction to the JavaScript programming language with a focus on building contemporary applications. Course consists of in-class activities and programming assignments that challenge students to create functional web apps (e.g. Yelp, Piazza, Instagram). Topics include syntax/semantics, event-based programming, document object model (DOM), application programming interfaces (APIs), asynchronous JavaScript and XML (AJAX), jQuery, Node.js, and MongoDB. Prerequisite: CS 107.
Terms: Aut | Units: 2

CS 45N: Computers and Photography: From Capture to Sharing

Preference to freshmen with experience in photography and use of computers. Elements of photography, such as lighting, focus, depth of field, aperture, and composition. How a photographer makes photos available for computer viewing, reliably stores them, organizes them, tags them, searches them, and distributes them online. No programming experience required. Digital SLRs and editing software will be provided to those students who do not wish to use their own.
Terms: Aut | Units: 3-4 | UG Reqs: WAY-CE

CS 50: Using Tech for Good

Students in the class will work in small teams to implement high-impact projects for partner organizations. Taught by the CS+Social Good team, the aim of the class is to empower you to leverage technology for social good by inspiring action, facilitating collaboration, and forging pathways towards global change. Recommended: CS 106B, CS 42 or 142. Class is open to students of all years.May be repeat for credit
Terms: Aut, Spr | Units: 2 | Repeatable 5 times (up to 10 units total)

CS 54N: Great Ideas in Computer Science

Stanford Introductory Seminar. Preference to freshmen. Covers the intellectual tradition of computer science emphasizing ideas that reflect the most important milestones in the history of the discipline. No prior experience with programming is assumed. Topics include programming and problem solving; implementing computation in hardware; algorithmic efficiency; the theoretical limits of computation; cryptography and security; and the philosophy behind artificial intelligence.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Roberts, E. (PI)

CS 95SI: Functional Programming in Clojure

Clojure is a dialect of Lisp that runs on the JVM, CLR, or Javascript engine. This course explores the fundamentals and philosophy of Clojure, with emphasis on the benefits of immutability and functional programming that make it such a powerful and fun language. Topics include: immutability, functional programming (function composition, higher order functions), concurrency (atoms, promises, futures, actors, Software Transactional Memory, etc), LISP (REPL-driven development, homoiconicity, macros), and interop (between Clojure code and code native to the host VM). The course also explores design paradigms and looks at the differences between functional programing and object-oriented programing, as well as bottom-up versus top-down design.
Terms: Aut | Units: 2
Instructors: Cain, J. (PI)

CS 96SI: Mobilizing Healthcare - iOS Development for Mobile Health

How can mobile technology can be leveraged to tackle pressing problems in healthcare? Our class will feature guest lecturers from Verily (formerly Google Life Sciences), Apple Health, and mobile health companies in developing countries and in the Bay Area. This class will give an overview of the fundamentals and contemporary usage of iOS development with a Mobile Health focus. Primary focus on developing best practices for Apple HealthKit and ResearchKit among other tools for iOS application development. Students will complete a project in the mobile health space sponsored and advised by professionals and student TAs. Recommended: CS193P or iOS development at a similar level. Apply at https://enrollcs96si.typeform.com/to/FGGHVl by Sept 30.
Terms: Aut | Units: 2
Instructors: Landay, J. (PI)

CS 103: Mathematical Foundations of Computing

Mathematical foundations required for computer science, including propositional predicate logic, induction, sets, functions, and relations. Formal language theory, including regular expressions, grammars, finite automata, Turing machines, and NP-completeness. Mathematical rigor, proof techniques, and applications. Prerequisite: 106A or equivalent.
Terms: Aut, Spr | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-FR
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints