2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 56 results for: BIOHOPK

BIOHOPK 43: Plant Biology, Evolution, and Ecology

Introduction to biology in a marine context. Principles of plant biology: physiology, structure, diversity. Principles of evolution: macro and microevolution, population genetics. Ecology: the principles governing the distribution and abundance of organisms; population, community, and ecosystem ecology. Equivalent to BIO 43. Corequisite: BIOHOPK 44Y.
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci

BIOHOPK 44Y: Core Laboratory in Plant Biology, Ecology and Evolution

Laboratory and field projects provide working familiarity with the concepts, organisms, and techniques of plant and evolutionary biology, and ecology. Emphasis is on hands-on experimentation in the marine environment, analysis of data, and written and oral presentation of the experiments. Equivalent to BIO 44Y. Corequisite: BIOHOPK 43. Satisfies WIM in Biology.
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIOHOPK 150H: Ecological Mechanics (BIOHOPK 250H)

(Graduate students register for 250H.) The principles of life¿s physical interactions. We will explore basic physics and fluid dynamics to see how these physical principles can be used to investigate ecology at levels from the individual to the community. Beginning with a review of basic physics we will investigate: response functions, diffusion, basic fluid dynamics, boundary layers, fluid-dynamic forces, and locomotion. In each case, we will learn the physics and engineering in the context of ecology. Some familiarity with basic physics and calculus advantageous, but not necessary.
Terms: Win | Units: 2 | UG Reqs: WAY-SMA
Instructors: Denny, M. (PI)

BIOHOPK 151H: Ecological Mechanics (BIOHOPK 251H)

(Graduate students register for 151H.) A continuation of BIOHOPK 150. The principles of life's physical interactions. We will explore basic physics and fluid dynamics to see how these physical principles can be used to investigate ecology at levels from the individual to the community. Thermal mechanics, biological materials, fracture mechanics, adhesion, beam theory, variation and scale, the statistics of extremes, and self-organization. Open to students from all backgrounds. Some familiarity with basic physics and calculus advantageous, but not necessary.
Terms: Spr | Units: 2
Instructors: Denny, M. (PI)

BIOHOPK 152H: Physiology of Global Change (BIOHOPK 252H)

(Graduate students register for 252H.) Global change is leading to significant alterations in several environmental factors, including temperature, ocean acidity and oxygen availability. This course focuses on: (i) how these environmental changes lead to physiological stress and (ii) how, and to what extent, are organisms able to adapt through short-term acclimatization and evolutionary adaptation to cope with these stresses. A major focus of the class is to link changes in species' distribution patterns with underlying physiological mechanics that establish environmental optima and tolerance limits.
Terms: Spr | Units: 2
Instructors: Somero, G. (PI)

BIOHOPK 153H: Current Topics and Concepts in Quantitative Fish Dynamics and Fisheries Management (BIOHOPK 253H)

(Graduate students register for 253H) The course will focus on extensive reading of seminal and reference papers published in the literature in the last decade on modeling population biology, community dynamics and fishery management in the marine environment. Basic knowledge of population dynamics is welcome. The goal is to develop an appreciation on both traditional and cutting-edge modeling approaches to study the dynamics and management of marine populations subjected to natural or anthropogenic shocks and pressures.
Terms: Spr | Units: 1
Instructors: De Leo, G. (PI)

BIOHOPK 160H: Developmental Biology in the Ocean: Diverse Embryonic & Larval Strategies of marine invertebrates (BIOHOPK 260H)

(Graduate students register for 261H). Lab course is designed to introduce students to the diversity in the early developmental strategies of marine invertebrates and how an understanding of these microscopic life histories is key to understanding the evolutionary diversification of phyla and the distribution of their more familiar adults. Emphasis is on hands-on collection, spawning, observation and manipulation of embryos and their larvae.
Terms: Spr | Units: 5-8 | Repeatable 2 times (up to 16 units total)
Instructors: Lowe, C. (PI)

BIOHOPK 161H: Invertebrate Zoology (BIOHOPK 261H)

(Graduate students register for 261H.) Survey of invertebrate diversity emphasizing form and function in a phylogenetic framework. Morphological diversity, life histories, physiology, and ecology of the major invertebrate groups, concentrating on local marine forms as examples. Current views on the phylogenetic relationships and evolution of the invertebrates. Lectures, lab, plus field trips. Satisfies Central Menu Area 3 for Bio majors. Prerequisite: Biology core or consent of instructor.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Watanabe, J. (PI)

BIOHOPK 162H: Comparative Animal Physiology (BIOHOPK 262H)

(Graduate students register for 262H.) How animals work. Topics: physiology of respiration, circulation, energy metabolism, thermal regulation, osmotic regulation, muscle physiology, and locomotion. Evolutionary and ecological physiology. Lectures, lab, and field research. An option to combine the course work with a more intensive research focus, with more units, is available. Satisfies Central Menu Area 3 for Bio majors. Prerequisite: Biology core or consent of instructor.
Last offered: Spring 2012 | UG Reqs: GER: DB-NatSci

BIOHOPK 163H: Oceanic Biology (BIOHOPK 263H)

(Graduate students register for 263H.) How the physics and chemistry of the oceanic environment affect marine plants and animals. Topics: seawater and ocean circulation, separation of light and nutrients in the two-layered ocean, oceanic food webs and trophic interactions, oceanic environments, biogeography, and global change. Lectures, discussion, and field trips. Satisfies Central Menu Area 4 for Bio majors. Recommended: PHYSICS 21 or 51, CHEM 31, Biology core, or consent of instructor.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints