2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

31 - 40 of 258 results for: all courses

BIO 84: Physiology

The fundamental concepts and systems of animal and plant physiology are the subject matter of this course. Prerequisites: None.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit

BIO 109A: The Human Genome and Disease (BIOC 109A, BIOC 209A, HUMBIO 158)

The variability of the human genome and the role of genomic information in research, drug discovery, and human health. Concepts and interpretations of genomic markers in medical research and real life applications. Human genomes in diverse populations. Original contributions from thought leaders in academia and industry and interaction between students and guest lecturers. Students with a major, minor or coterm in Biology: 109A/209A or 109B/209B may count toward degree program but not both.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

BIO 109B: The Human Genome and Disease: Genetic Diversity and Personalized Medicine (BIOC 109B)

Continuation of 109A/209A. Genetic drift: the path of human predecessors out of Africa to Europe and then either through Asia to Australia or through northern Russia to Alaska down to the W. Coast of the Americas. Support for this idea through the histocompatibility genes and genetic sequences that predispose people to diseases. Guest lectures from academia and pharmaceutical companies. Prerequisite: Biology or Human Biology core. Students with a major, minor or coterm in Biology: 109A/209A or 109B/209B may count toward degree program but not both.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

BIO 110: Chromatin Regulation of the Genome (BIO 210)

Maintenance of the genome is a prerequisite for life. In eukaryotes, all DNA-templated processes are tightly connected to chromatin structure and function. This course will explore epigenetic and chromatin regulation of cellular processes related to aging, cancer, stem cell pluripotency, metabolic homeostasis, and development. Course material integrates current literature with a foundational review of histone modifications and nucleosome composition in epigenetic inheritance, transcription, replication, cell division and DNA damage responses. Prerequisite: BIO 41 or consent of instructor.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

BIO 115: The Hidden Kingdom - Evolution, Ecology and Diversity of Fungi (BIO 239)

Fungi are critical, yet often hidden, components of the biosphere. They regulate decomposition, are primary partners in plant symbiosis and strongly impact agriculture and economics. Students will explore the fascinating world of fungal biology, ecology and evolution via lecture, lab, field exercises and Saturday field trips that will provide traditional and molecular experiences in the collection, analysis and industrial use of diverse fungi. Students will chose an environmental niche, collect and identify resident fungi, and hypothesize about their community relationship. Prerequisite: Bio 43 recommended.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit

BIO 117: Biology and Global Change (EARTHSYS 111, ESS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

BIO 118: Genetic Analysis of Biological Processes

Focus is on using mutations and genetic analysis to study biological and medical questions. The first portion of the course covers how the identification and analysis of mutations can be used in model systems to investigate biological processes such as development and metabolism. In the second portion of the course, we focus on the use of existing genetic variation in humans and other species to identify disease-associated genes as well as to investigate variation in morphological traits such as body size and shape. This course will be offered for a final time in Winter 2017-18 and then discontinued. Students who have taken BIO 82 may not enroll in BIO 118.
Terms: Win, offered once only | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

BIO 119: Evolution of Marine Ecosystems (EARTHSYS 122, GS 123, GS 223B)

Life originally evolved in the ocean. When, why, and how did the major transitions occur in the history of marine life? What triggered the rapid evolution and diversification of animals in the Cambrian, after more than 3.5 billion years of Earth's history? What caused Earth's major mass extinction events? How do ancient extinction events compare to current threats to marine ecosystems? How has the evolution of primary producers impacted animals, and how has animal evolution impacted primary producers? In this course, we will review the latest evidence regarding these major questions in the history of marine ecosystems. We will develop familiarity with the most common groups of marine animal fossils. We will also conduct original analyses of paleontological data, developing skills both in the framing and testing of scientific hypotheses and in data analysis and presentation.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

BIO 137: Plant Genetics

Gene analysis, mutagenesis, transposable elements; developmental genetics of flowering and embryo development; biochemical genetics of plant metabolism; scientific and societal lessons from transgenic plants. Satisfies Central Menu Area 2. Prerequisite: Biology core or consent of instructor. Satisfies WIM in Biology.
Terms: not given this year, last offered Spring 2017 | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

BIO 142: Molecular Geomicrobiology Laboratory (EARTHSYS 143, ESS 143, ESS 243)

In this course, students will be studying the biosynthesis of cyclic lipid biomarkers, molecules that are produced by modern microbes that can be preserved in rocks that are over a billion years old and which geologist use as molecular fossils. Students will be tasked with identifying potential biomarker lipid synthesis genes in environmental genomic databases, expressing those genes in a model bacterial expression system in the lab, and then analyzing the lipid products that are produced. The overall goal is for students to experience the scientific research process including generating hypotheses, testing these hypotheses in laboratory experiments, and communicating their results through a publication style paper. Prerequisites: BIO83 and CHEM35 or permission of the instructor.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA | Grading: Letter (ABCD/NP)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints