2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

231 - 240 of 258 results for: all courses

PHYSICS 95Q: The Philosophies of Three Great Physicists

Richard Feynman has famously said, Philosophy of science is about as useful to scientists as ornithology is to birds. A closer look at key moments in the history of physics, however, reveals a different picture. Contrary to the misconception that philosophy has nothing to offer to science in general, and physics in particular, watershed moments in the development of physics were inspired and motivated by deeply held philosophical principles. Similarly, important developments in physics have generated important and difficult philosophical questions. In this sophomore seminar we will explore three significant moments in the development of physics surrounding the works of Newton, Einstein, and Bohr. We will analyze the relationship between the prevailing philosophical views they espoused and the physics they produced. How did Newton come to the view of absolute and fixed space and time? What led Einstein to reject the notion of a fixed space and time and propose a relativistic, and even d more »
Richard Feynman has famously said, Philosophy of science is about as useful to scientists as ornithology is to birds. A closer look at key moments in the history of physics, however, reveals a different picture. Contrary to the misconception that philosophy has nothing to offer to science in general, and physics in particular, watershed moments in the development of physics were inspired and motivated by deeply held philosophical principles. Similarly, important developments in physics have generated important and difficult philosophical questions. In this sophomore seminar we will explore three significant moments in the development of physics surrounding the works of Newton, Einstein, and Bohr. We will analyze the relationship between the prevailing philosophical views they espoused and the physics they produced. How did Newton come to the view of absolute and fixed space and time? What led Einstein to reject the notion of a fixed space and time and propose a relativistic, and even dynamic space-time? What is Bohr's influential doctrine of complementary, and why did several generations of physicists believe it to be an adequate philosophical response to quantum mechanics? We will see that the relationship between philosophy and physics is more similar to the relationship between mathematics and physics where progress in one area is often preceded and followed by progress in the second.
Terms: not given this year, last offered Winter 2017 | Units: 3 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit

PHYSICS 100: Introduction to Observational Astrophysics

Designed for undergraduate physics majors but open to all students with a calculus-based physics background and some laboratory and coding experience. Students make and analyze observations using the telescopes at the Stanford Student Observatory. Topics covered include navigating the night sky, the physics of stars and galaxies, telescope instrumentation and operation, imaging and spectroscopic techniques, quantitative error analysis, and effective scientific communication. The course concludes with an independent project where student teams propose and execute an observational astronomy project of their choosing, using techniques learned in class to gather and analyze their data, and presenting their findings in the forms of professional-style oral presentations and research papers. Enrollment by permission. To get a permission number please complete form: http://web.stanford.edu/~elva/physics100prelim.fb If you have not heard from us by the beginning of class, please come to the first class session.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)

PHYSICS 105: Intermediate Physics Laboratory I: Analog Electronics

Analog electronics including Ohm's law, passive circuits and transistor and op amp circuits, emphasizing practical circuit design skills to prepare undergraduates for laboratory research. Short design project. Minimal use of math and physics, no electronics experience assumed beyond introductory physics. Prerequisite: PHYSICS 43 or PHYSICS 63.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

PHYSICS 107: Intermediate Physics Laboratory II: Experimental Techniques and Data Analysis

Experiments on lasers, Gaussian optics, and atom-light interaction, with emphasis on data and error analysis techniques. Students describe a subset of experiments in scientific paper format. Prerequisites: completion of PHYSICS 40 or PHYSICS 60 series, and PHYSICS 70 and PHYSICS 105. Recommended pre- or corequisites: PHYSICS 120 and 130. WIM
Terms: Win | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

PHYSICS 108: Advanced Physics Laboratory: Project

Terms: Win, Spr | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

PHYSICS 110: Advanced Mechanics (PHYSICS 210)

Lagrangian and Hamiltonian mechanics. Principle of least action, Euler-Lagrange equations. Small oscillations and beyond. Symmetries, canonical transformations, Hamilton-Jacobi theory, action-angle variables. Introduction to classical field theory. Selected other topics, including nonlinear dynamical systems, attractors, chaotic motion. Undergraduates register for Physics 110 (4 units). Graduates register for Physics 210 (3 units). Prerequisites: MATH 131P or PHYSICS 111, and PHYSICS 112 or MATH elective 104 or higher. Recommended prerequisite: PHYSICS 130.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA | Grading: Letter or Credit/No Credit

PHYSICS 120: Intermediate Electricity and Magnetism I

Vector analysis. Electrostatic fields, including boundary-value problems and multipole expansion. Dielectrics, static and variable magnetic fields, magnetic materials. Maxwell's equations. Prerequisites: PHYSICS 43 or PHYS 63; MATH 52 and MATH 53. Pre- or corequisite: PHYS 111, MATH 131P or MATH 173. Recommended corequisite: PHYS 112.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA | Grading: Letter or Credit/No Credit

PHYSICS 130: Quantum Mechanics I

The origins of quantum mechanics and wave mechanics. Schrödinger equation and solutions for one-dimensional systems. Commutation relations. Generalized uncertainty principle. Time-energy uncertainty principle. Separation of variables and solutions for three-dimensional systems; application to hydrogen atom. Spherically symmetric potentials and angular momentum eigenstates. Spin angular momentum. Addition of angular momentum. Prerequisites: PHYSICS 65 or PHYSICS 70 and PHYSICS 111 or MATH 131P or MATH 173. MATH 173 can be taken concurrently. Pre- or corequisites: PHYSICS 120.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA | Grading: Letter or Credit/No Credit

PSYC 50Q: Brain Training: Hype or Help?

Focuses on primary literature to evaluate evidence supporting claims that concerted practice can lead to improvements in capacities such as working memory, speed of processing and IQ. Looks across lifespan from childhood and remediation of learning disabilities to elderly individuals and the potential for brain training to delay onset of dementia. Examines new research into brain training as treatment for psychiatric disorders, as well as neuroscience behind learning and memory. Considers ethical implications of these programs. Students participate in brain training and track and analyze progress.
Terms: not given this year, last offered Winter 2015 | Units: 3 | UG Reqs: WAY-SI, WAY-SMA | Grading: Letter (ABCD/NP)

PSYC 54N: Genes, Memes and Behavior

Examines how natural selection operates to shape successful genes in the gene pool, how cultural selection operates to shape successful "memes" in the pool of cultural ideas, and how selection by consequences operates to shape successful behaviors in our repertoires. Topics include cases in which selection produces undesirable consequences (e.g. genetic mutations, cultural problems, and aberrant behaviors in children). Emphasis on understanding the role of modern natural science in complex behaviors and why study of human life from an interdisciplinary perspective is important.
Terms: Aut, Sum | Units: 3 | UG Reqs: WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: Hall, S. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints