2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

61 - 70 of 89 results for: CS

CS 273A: The Human Genome Source Code (BIOMEDIN 273A, DBIO 273A)

A computational introduction to the most amazing programming language on the planet: your genome. Topics include genome sequencing (assembling source code from code fragments); the human genome functional landscape: variable assignments (genes), control-flow logic (gene regulation) and run-time stack (epigenomics); human disease and personalized genomics (as a hunt for bugs in the human code); genome editing (code injection) to cure the incurable; and the source code behind amazing animal adaptations. Algorithmic approaches will introduce ideas from computational genomics, machine learning and natural language processing. Course includes primers on molecular biology, and text processing languages. No prerequisites.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Bejerano, G. (PI)

CS 275: Translational Bioinformatics (BIOE 217, BIOMEDIN 217, GENE 217)

Computational methods for the translation of biomedical data into diagnostic, prognostic, and therapeutic applications in medicine. Topics: multi-scale omics data generation and analysis, utility and limitations of public biomedical resources, machine learning and data mining, issues and opportunities in drug discovery, and mobile/digital health solutions. Case studies and course project. Prerequisites: programming ability at the level of CS 106A and familiarity with biology and statistics.
Terms: Win | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

CS 275A: Symbolic Musical Information (MUSIC 253)

Focus on symbolic data for music applications including advanced notation systems, optical music recognition, musical data conversion, and internal structure of MIDI files.
Terms: Win | Units: 2-4 | Grading: Letter or Credit/No Credit

CS 279: Computational Biology: Structure and Organization of Biomolecules and Cells (BIOE 279, BIOMEDIN 279, BIOPHYS 279, CME 279)

Computational techniques for investigating and designing the three-dimensional structure and dynamics of biomolecules and cells. These computational methods play an increasingly important role in drug discovery, medicine, bioengineering, and molecular biology. Course topics include protein structure prediction, protein design, drug screening, molecular simulation, cellular-level simulation, image analysis for microscopy, and methods for solving structures from crystallography and electron microscopy data. Prerequisites: elementary programming background ( CS 106A or equivalent) and an introductory course in biology or biochemistry.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Dror, R. (PI)

CS 334A: Convex Optimization I (CME 364A, EE 364A)

Convex sets, functions, and optimization problems. The basics of convex analysis and theory of convex programming: optimality conditions, duality theory, theorems of alternative, and applications. Least-squares, linear and quadratic programs, semidefinite programming, and geometric programming. Numerical algorithms for smooth and equality constrained problems; interior-point methods for inequality constrained problems. Applications to signal processing, communications, control, analog and digital circuit design, computational geometry, statistics, machine learning, and mechanical engineering. Prerequisite: linear algebra such as EE263, basic probability.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Boyd, S. (PI)

CS 348C: Computer Graphics: Animation and Simulation

Core mathematics and methods for computer animation and motion simulation. Traditional animation techniques. Physics-based simulation methods for modeling shape and motion: particle systems, constraints, rigid bodies, deformable models, collisions and contact, fluids, and fracture. Animating natural phenomena. Methods for animating virtual characters and crowds. Additional topics selected from data-driven animation methods, realism and perception, animation systems, motion control, real-time and interactive methods, and multi-sensory feedback. Recommended: CS 148 and/or 205A. Prerequisite: linear algebra.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: James, D. (PI)

CS 369L: Algorithmic Perspective on Machine Learning

Many problems in machine learning are intractable in the worst case, andnpose a challenge for the design of algorithms with provable guarantees. In this course, we will discuss several success stories at the intersection of algorithm design and machine learning, focusing on devising appropriate models and mathematical tools to facilitate rigorous analysis.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Charikar, M. (PI)

CS 390A: Curricular Practical Training

Educational opportunities in high technology research and development labs in the computing industry. Qualified computer science students engage in internship work and integrate that work into their academic program. Students register during the quarter they are employed and complete a research report outlining their work activity, problems investigated, results, and follow-on projects they expect to perform. 390 A, B, and C may each be taken once.
Terms: Aut, Win, Spr, Sum | Units: 1 | Grading: Satisfactory/No Credit
Instructors: Aiken, A. (PI) ; Akeley, K. (PI) ; Altman, R. (PI) ; Bailis, P. (PI) ; Baker, M. (PI) ; Barbagli, F. (PI) ; Batzoglou, S. (PI) ; Bejerano, G. (PI) ; Bernstein, M. (PI) ; Blikstein, P. (PI) ; Boneh, D. (PI) ; Bradski, G. (PI) ; Brafman, R. (PI) ; Brunskill, E. (PI) ; Cain, J. (PI) ; Cao, P. (PI) ; Casado, M. (PI) ; Charikar, M. (PI) ; Cheriton, D. (PI) ; Cooper, S. (PI) ; Dally, B. (PI) ; De-Micheli, G. (PI) ; Dill, D. (PI) ; Dror, R. (PI) ; Dwork, C. (PI) ; Engler, D. (PI) ; Ermon, S. (PI) ; Fatahalian, K. (PI) ; Fedkiw, R. (PI) ; Feigenbaum, E. (PI) ; Fikes, R. (PI) ; Fischer, M. (PI) ; Fisher, K. (PI) ; Fogg, B. (PI) ; Fox, A. (PI) ; Garcia-Molina, H. (PI) ; Genesereth, M. (PI) ; Gill, J. (PI) ; Girod, B. (PI) ; Goel, A. (PI) ; Goodman, N. (PI) ; Gregg, C. (PI) ; Guibas, L. (PI) ; Hanrahan, P. (PI) ; Heer, J. (PI) ; Hennessy, J. (PI) ; Horowitz, M. (PI) ; James, D. (PI) ; Johari, R. (PI) ; Johnson, M. (PI) ; Jurafsky, D. (PI) ; Katti, S. (PI) ; Kay, M. (PI) ; Khatib, O. (PI) ; Klemmer, S. (PI) ; Kochenderfer, M. (PI) ; Koller, D. (PI) ; Koltun, V. (PI) ; Konolige, K. (PI) ; Kozyrakis, C. (PI) ; Lam, M. (PI) ; Landay, J. (PI) ; Latombe, J. (PI) ; Lee, C. (PI) ; Leskovec, J. (PI) ; Levis, P. (PI) ; Levitt, M. (PI) ; Levoy, M. (PI) ; Li, F. (PI) ; Liang, P. (PI) ; Manna, Z. (PI) ; Manning, C. (PI) ; Mazieres, D. (PI) ; McCarthy, J. (PI) ; McKeown, N. (PI) ; Mitchell, J. (PI) ; Mitra, S. (PI) ; Motwani, R. (PI) ; Musen, M. (PI) ; Nass, C. (PI) ; Nayak, P. (PI) ; Ng, A. (PI) ; Niebles Duque, J. (PI) ; Nilsson, N. (PI) ; Olukotun, O. (PI) ; Ousterhout, J. (PI) ; Paepcke, A. (PI) ; Pande, V. (PI) ; Parlante, N. (PI) ; Pea, R. (PI) ; Piech, C. (PI) ; Plotkin, S. (PI) ; Plummer, R. (PI) ; Prabhakar, B. (PI) ; Pratt, V. (PI) ; Raghavan, P. (PI) ; Rajaraman, A. (PI) ; Re, C. (PI) ; Reingold, O. (PI) ; Roberts, E. (PI) ; Rosenblum, M. (PI) ; Roughgarden, T. (PI) ; Sahami, M. (PI) ; Salisbury, J. (PI) ; Savarese, S. (PI) ; Schwarz, K. (PI) ; Shoham, Y. (PI) ; Sosic, R. (PI) ; Stanford, J. (PI) ; Stepp, M. (PI) ; Thrun, S. (PI) ; Tobagi, F. (PI) ; Trevisan, L. (PI) ; Ullman, J. (PI) ; Valiant, G. (PI) ; Van Roy, B. (PI) ; Widom, J. (PI) ; Wiederhold, G. (PI) ; Williams, R. (PI) ; Williams, V. (PI) ; Winograd, T. (PI) ; Winstein, K. (PI) ; Young, P. (PI) ; Zaharia, M. (PI) ; Zelenski, J. (PI) ; Zou, J. (PI)

CS 390B: Curricular Practical Training

Educational opportunities in high technology research and development labs in the computing industry. Qualified computer science students engage in internship work and integrate that work into their academic program. Students register during the quarter they are employed and complete a research report outlining their work activity, problems investigated, results, and follow-on projects they expect to perform. 390A,B,C may each be taken once.
Terms: Aut, Win, Spr, Sum | Units: 1 | Grading: Satisfactory/No Credit
Instructors: Agrawala, M. (PI) ; Aiken, A. (PI) ; Akeley, K. (PI) ; Altman, R. (PI) ; Bailis, P. (PI) ; Baker, M. (PI) ; Barbagli, F. (PI) ; Batzoglou, S. (PI) ; Bejerano, G. (PI) ; Bernstein, M. (PI) ; Blikstein, P. (PI) ; Boneh, D. (PI) ; Bradski, G. (PI) ; Brafman, R. (PI) ; Brunskill, E. (PI) ; Cain, J. (PI) ; Cao, P. (PI) ; Casado, M. (PI) ; Charikar, M. (PI) ; Cheriton, D. (PI) ; Cooper, S. (PI) ; Dally, B. (PI) ; De-Micheli, G. (PI) ; Dill, D. (PI) ; Dwork, C. (PI) ; Engler, D. (PI) ; Ermon, S. (PI) ; Fedkiw, R. (PI) ; Feigenbaum, E. (PI) ; Fikes, R. (PI) ; Fisher, K. (PI) ; Fogg, B. (PI) ; Fox, A. (PI) ; Garcia-Molina, H. (PI) ; Genesereth, M. (PI) ; Gill, J. (PI) ; Girod, B. (PI) ; Goel, A. (PI) ; Guibas, L. (PI) ; Hanrahan, P. (PI) ; Heer, J. (PI) ; Hennessy, J. (PI) ; Horowitz, M. (PI) ; James, D. (PI) ; Johari, R. (PI) ; Johnson, M. (PI) ; Jurafsky, D. (PI) ; Katti, S. (PI) ; Kay, M. (PI) ; Khatib, O. (PI) ; Klemmer, S. (PI) ; Koller, D. (PI) ; Koltun, V. (PI) ; Konolige, K. (PI) ; Kozyrakis, C. (PI) ; Lam, M. (PI) ; Landay, J. (PI) ; Latombe, J. (PI) ; Lee, C. (PI) ; Leskovec, J. (PI) ; Levis, P. (PI) ; Levitt, M. (PI) ; Levoy, M. (PI) ; Li, F. (PI) ; Liang, P. (PI) ; Manna, Z. (PI) ; Manning, C. (PI) ; Mazieres, D. (PI) ; McCarthy, J. (PI) ; McKeown, N. (PI) ; Mitchell, J. (PI) ; Mitra, S. (PI) ; Motwani, R. (PI) ; Musen, M. (PI) ; Nass, C. (PI) ; Nayak, P. (PI) ; Ng, A. (PI) ; Nilsson, N. (PI) ; Olukotun, O. (PI) ; Ousterhout, J. (PI) ; Paepcke, A. (PI) ; Parlante, N. (PI) ; Pea, R. (PI) ; Piech, C. (PI) ; Plotkin, S. (PI) ; Plummer, R. (PI) ; Prabhakar, B. (PI) ; Pratt, V. (PI) ; Raghavan, P. (PI) ; Rajaraman, A. (PI) ; Re, C. (PI) ; Roberts, E. (PI) ; Rosenblum, M. (PI) ; Roughgarden, T. (PI) ; Sahami, M. (PI) ; Salisbury, J. (PI) ; Savarese, S. (PI) ; Schwarz, K. (PI) ; Shoham, Y. (PI) ; Thrun, S. (PI) ; Tobagi, F. (PI) ; Trevisan, L. (PI) ; Ullman, J. (PI) ; Valiant, G. (PI) ; Van Roy, B. (PI) ; Widom, J. (PI) ; Wiederhold, G. (PI) ; Williams, R. (PI) ; Winograd, T. (PI) ; Winstein, K. (PI) ; Young, P. (PI) ; Zaharia, M. (PI) ; Zelenski, J. (PI)

CS 390C: Curricular Practical Training

Educational opportunities in high technology research and development labs in the computing industry. Qualified computer science students engage in internship work and integrate that work into their academic program. Students register during the quarter they are employed and complete a research report outlining their work activity, problems investigated, results, and follow-on projects they expect to perform. 390A,B,C may each be taken once.
Terms: Aut, Win, Spr, Sum | Units: 1 | Grading: Satisfactory/No Credit
Instructors: Aiken, A. (PI) ; Akeley, K. (PI) ; Altman, R. (PI) ; Baker, M. (PI) ; Barbagli, F. (PI) ; Batzoglou, S. (PI) ; Bejerano, G. (PI) ; Bernstein, M. (PI) ; Blikstein, P. (PI) ; Boneh, D. (PI) ; Bradski, G. (PI) ; Brafman, R. (PI) ; Cain, J. (PI) ; Cao, P. (PI) ; Casado, M. (PI) ; Charikar, M. (PI) ; Cheriton, D. (PI) ; Cooper, S. (PI) ; Dally, B. (PI) ; De-Micheli, G. (PI) ; Dill, D. (PI) ; Dwork, C. (PI) ; Engler, D. (PI) ; Ermon, S. (PI) ; Fedkiw, R. (PI) ; Feigenbaum, E. (PI) ; Fikes, R. (PI) ; Fisher, K. (PI) ; Fogg, B. (PI) ; Fox, A. (PI) ; Garcia-Molina, H. (PI) ; Genesereth, M. (PI) ; Gill, J. (PI) ; Girod, B. (PI) ; Goel, A. (PI) ; Goodman, N. (PI) ; Guibas, L. (PI) ; Hanrahan, P. (PI) ; Heer, J. (PI) ; Hennessy, J. (PI) ; Horowitz, M. (PI) ; James, D. (PI) ; Johari, R. (PI) ; Johnson, M. (PI) ; Jurafsky, D. (PI) ; Katti, S. (PI) ; Kay, M. (PI) ; Khatib, O. (PI) ; Klemmer, S. (PI) ; Koller, D. (PI) ; Koltun, V. (PI) ; Konolige, K. (PI) ; Kozyrakis, C. (PI) ; Lam, M. (PI) ; Latombe, J. (PI) ; Lee, C. (PI) ; Leskovec, J. (PI) ; Levis, P. (PI) ; Levitt, M. (PI) ; Levoy, M. (PI) ; Li, F. (PI) ; Liang, P. (PI) ; Manna, Z. (PI) ; Manning, C. (PI) ; Mazieres, D. (PI) ; McCarthy, J. (PI) ; McKeown, N. (PI) ; Mitchell, J. (PI) ; Mitra, S. (PI) ; Motwani, R. (PI) ; Musen, M. (PI) ; Nass, C. (PI) ; Nayak, P. (PI) ; Ng, A. (PI) ; Nilsson, N. (PI) ; Olukotun, O. (PI) ; Ousterhout, J. (PI) ; Paepcke, A. (PI) ; Parlante, N. (PI) ; Pea, R. (PI) ; Piech, C. (PI) ; Plotkin, S. (PI) ; Plummer, R. (PI) ; Prabhakar, B. (PI) ; Pratt, V. (PI) ; Raghavan, P. (PI) ; Rajaraman, A. (PI) ; Re, C. (PI) ; Roberts, E. (PI) ; Rosenblum, M. (PI) ; Roughgarden, T. (PI) ; Sahami, M. (PI) ; Salisbury, J. (PI) ; Savarese, S. (PI) ; Schwarz, K. (PI) ; Shoham, Y. (PI) ; Stepp, M. (PI) ; Thrun, S. (PI) ; Tobagi, F. (PI) ; Trevisan, L. (PI) ; Ullman, J. (PI) ; Valiant, G. (PI) ; Van Roy, B. (PI) ; Widom, J. (PI) ; Wiederhold, G. (PI) ; Williams, R. (PI) ; Winograd, T. (PI) ; Winstein, K. (PI) ; Young, P. (PI) ; Zaharia, M. (PI) ; Zelenski, J. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints