2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 25 results for: AA ; Currently searching spring courses. You can expand your search to include all quarters

AA 190: Directed Research and Writing in Aero/Astro

For undergraduates. Experimental or theoretical work under faculty direction, and emphasizing development of research and communication skills. Written report(s) and letter grade required; if this is not appropriate, enroll in 199. Consult faculty in area of interest for appropriate topics, involving one of the graduate research groups or other special projects. May be repeated for credit. Prerequisite: consent of student services manager and instructor.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | Repeatable for credit

AA 199: Independent Study in Aero/Astro

Directed reading, lab, or theoretical work for undergraduate students. Consult faculty in area of interest for appropriate topics involving one of the graduate research groups or other special projects. May be repeated for credit. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit

AA 200: Applied Aerodynamics

Terms: Spr | Units: 3
Instructors: Cantwell, B. (PI)

AA 201A: Fundamentals of Acoustics

Acoustic equations for a stationary homogeneous fluid; wave equation; plane, spherical, and cylindrical waves; harmonic (monochromatic) waves; simple sound radiators; reflection and transmission of sound at interfaces between different media; multipole analysis of sound radiation; Kirchoff integral representation; scattering and diffraction of sound; propagation through ducts (dispersion, attenuation, group velocity); sound in enclosed regions (reverberation, absorption, and dispersion); radiation from moving sources; propagation in the atmosphere and underwater. Prerequisite: first-year graduate standing in engineering, mathematics, sciences; or consent of instructor.
Terms: Spr | Units: 3
Instructors: Lele, S. (PI)

AA 203: Introduction to Optimal Control Theory

Basic solution techniques for optimal control problems. Dynamic programming, calculus of variations, and numerical techniques for trajectory optimization. Special cases (chiefly LQR and robotic motion planning); modern solution approaches (such as MPC and MILP); and introduction to stochastic optimal control. Examples in MATLAB. Prerequisites: Linear algebra ( EE 263 or equivalent).
Terms: Spr | Units: 3
Instructors: Pavone, M. (PI)

AA 214A: Introduction to Numerical Methods for Engineering (CME 206, ME 300C)

Numerical methods from a user's point of view. Lagrange interpolation, splines. Integration: trapezoid, Romberg, Gauss, adaptive quadrature; numerical solution of ordinary differential equations: explicit and implicit methods, multistep methods, Runge-Kutta and predictor-corrector methods, boundary value problems, eigenvalue problems; systems of differential equations, stiffness. Emphasis is on analysis of numerical methods for accuracy, stability, and convergence. Introduction to numerical solutions of partial differential equations; Von Neumann stability analysis; alternating direction implicit methods and nonlinear equations. Prerequisites: CME 200/ ME 300A, CME 204/ ME 300B.
Terms: Aut, Spr | Units: 3

AA 214C: Numerical Computation of Viscous Flow

Numerical methods for solving parabolic sets of partial differential equations. Numerical approximation of the equations describing compressible viscous flow with adiabatic, isothermal, slip, and no-slip wall boundary conditions. Applications to the Navier-Stokes equations in two and three dimensions at high Reynolds number. Computational problems are assigned. Prerequisite: 214B.
Terms: Spr | Units: 3
Instructors: Jameson, A. (PI)

AA 218: Introduction to Symmetry Analysis

Methods of symmetry analysis and their use in the reduction and simplification of physical problems. Topics: dimensional analysis, phase-space analysis of autonomous systems of ordinary differential equations, use of Lie groups to reduce the order of nonlinear ODEs and to generate integrating factors, use of Lie groups to reduce the dimension of partial differential equations and to generate similarity variables, exact solutions of nonlinear PDEs generated from groups. Mathematica-based software developed by the instructor is used for finding invariant groups of ODEs and PDEs.
Terms: Spr | Units: 3
Instructors: Cantwell, B. (PI)

AA 222: Introduction to Multidisciplinary Design Optimization

Design of aerospace systems within a formal optimization environment. Mathematical formulation of the multidisciplinary design problem (parameterization of design space, choice of objective functions, constraint definition); survey of algorithms for unconstrained and constrained optimization and optimality conditions; description of sensitivity analysis techniques. Hierarchical techniques for decomposition of the multidisciplinary design problem; use of approximation theory. Applications to design problems in aircraft and launch vehicle design. Prerequisites: multivariable calculus; familiarity with a high-level programming language: FORTRAN, C, C++, MATLAB, Python, or Julia.
Terms: Spr | Units: 3-4

AA 236C: Spacecraft Design Laboratory

Terms: Spr | Units: 3-5
Instructors: Kalman, A. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints