2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

121 - 130 of 134 results for: all courses

PHYSICS 100: Introduction to Observational Astrophysics

Designed for undergraduate physics majors but is open to all students with a calculus-based physics background and some laboratory and coding experience. Students make and analyze observations using the telescopes at the Stanford Student Observatory. Topics covered include navigating the night sky, the physics of stars and galaxies, telescope instrumentation and operation, imaging techniques, quantitative error analysis, and effective scientific communication. The course concludes with an independent project where student teams propose and execute an observational astronomy project of their choosing, using techniques learned in class to gather and analyze their data, and presenting their findings in the forms of professional-style oral presentations and research papers. Suggested preparation: Physics 89L. Enrollment by permission. Due to physical limitations at the observatory, this class has a firm enrollment cap. We may not be able to accommodate all requests to enroll. Before permission numbers are given students must complete this form: https://forms.gle/KDarBRcZWJZG3qr66.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA, GER: DB-NatSci, WAY-AQR

PHYSICS 105: Intermediate Physics Laboratory I: Analog Electronics

Introductory laboratory electronics, designed for Physics and Engineering Physics majors but open to all students with science or engineering interests in analog circuits, instrumentation and signal processing. The course is focused on laboratory exercises that build skills needed for measurements, including sensors, amplification and filtering, and fundamentals of noise in physical systems. The hands-on lab exercises include DC circuits, RC and diode circuits, applications of operational amplifiers, non-linear circuits and optoelectronics. The class exercises build towards a lock-in amplifier contest where each lab section designs and builds a synchronous detection system to measure a weak optical signal, with opportunities to understand the limits of the design, build improvements and compare results with the other lab sections. The course focuses on practical techniques and insight from the lab exercises, with a goal to prepare undergraduates for laboratory research. No formal electronics experience is required beyond exposure to concepts from introductory Physics or Engineering courses (Ohm's law, charge conservation, physics of capacitors and inductors, etc.). Now offered as PHYSICS 104. Recommended prerequisite: Physics 43 or 63, or Engineering 40A or 40M.
Last offered: Autumn 2019 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

PHYSICS 110: Advanced Mechanics (PHYSICS 210)

Lagrangian and Hamiltonian mechanics. Principle of least action, Euler-Lagrange equations. Small oscillations and beyond. Symmetries, canonical transformations, Hamilton-Jacobi theory, action-angle variables. Introduction to classical field theory. Selected other topics, including nonlinear dynamical systems, attractors, chaotic motion. Undergraduates register for Physics 110 (4 units). Graduates register for Physics 210 (3 units). Prerequisites: MATH 131P or PHYSICS 111. Recommended prerequisite: PHYSICS 130.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

PHYSICS 112: Mathematical Methods for Physics

The course will focus on the theory of functions of a complex variable - with broad implications in many areas of physics. As time allows, we will also cover the basics of group theory and the theory of group representations, with focus on symmetry groups that arise in various physical settings. Prerequisites: MATH 53 or equivalent and Physics 111 or the equivalent.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR | Repeatable 3 times (up to 12 units total)

PHYSICS 113: Computational Physics

Numerical methods for solving problems in mechanics, astrophysics, electromagnetism, quantum mechanics, and statistical mechanics. Methods include numerical integration; solutions of ordinary and partial differential equations; solutions of the diffusion equation, Laplace's equation, and Poisson's equation with various methods; statistical methods including Monte Carlo techniques; matrix methods and eigenvalue problems. A short introduction to Python, which is used for class examples and active learning notebooks. Independent class projects allow deep explorations of course topics and make up a significant component of the course grade. No prerequisites but some previous programming experience is advisable.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-FR

PHYSICS 120: Intermediate Electricity and Magnetism I

Vector analysis. Electrostatic fields, including boundary-value problems and multipole expansion. Dielectrics, static and variable magnetic fields, magnetic materials. Maxwell's equations. Prerequisites: PHYSICS 81; MATH 52 and MATH 53. Pre- or corequisite: PHYS 111 or MATH 131P or MATH 173 or Math 220.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

PHYSICS 130: Quantum Mechanics I

The origins of quantum mechanics and wave mechanics. Schr¿dinger equation and solutions for one-dimensional systems. Commutation relations. Generalized uncertainty principle. Time-energy uncertainty principle. Separation of variables and solutions for three-dimensional systems; application to a hydrogen atom. Spherically symmetric potentials and angular momentum eigenstates. Spin angular momentum. Addition of angular momentum. Prerequisites: ( PHYSICS 65 or PHYSICS 70 or PHYSICS 71) and ( PHYSICS 111 or MATH 131P or MATH 173 or MATH 220) and PHYSICS 120.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA, GER: DB-NatSci, WAY-FR

PSYC 135: Dement's Sleep and Dreams (PSYC 235)

Dr. William Dement created Sleep and Dreams in 1971, the world's first university course devoted to the science of sleep. Upon his retirement he selected Dr. Rafael Pelayo to be his successor, but he continued to participate in class until his passing in the summer of 2020. To honor his legacy in perpetuity, Dr.Pelayo renamed the course 'Dement's Sleep Dreams' as he had promised him he would. The goal is to retain the original spirit of the course as the content is continuously updated to reflect current state of sleep science. The course is designed to impart essential knowledge of the neuroscience of sleep and covers how sleep affects our daily lives. The course covers normal sleep and dreams, as well as common sleep disorders. Course content empowers students to make educated decisions concerning sleep and alertness for the rest of their lives and shapes students' attitudes about the importance of sleep. Students will keep track of their sleep patterns during the course. They will also participate in an outreach project to help improve awareness of the importance of sleep heath in our community. Undergraduates must enroll in PSYC 135, while graduate students should enroll in PSYC 235.
Terms: Win, Spr | Units: 3 | UG Reqs: WAY-SMA, GER: DB-NatSci

PSYC 149: The Neurobiology of Sleep (BIO 149, BIO 249, HUMBIO 161, PSYC 261)

The neurochemistry and neurophysiology of changes in brain activity and conscious awareness are associated with changes in the sleep/wake state. Behavioral and neurobiological phenomena include sleep regulation, sleep homeostasis, circadian rhythms, sleep disorders, sleep function, and the molecular biology of sleep. Preference to seniors and graduate students.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

PSYCH 30: Introduction to Perception

Behavioral and neural aspects of perception focusing on visual and auditory perception. Topics include: scientific methods for studying perception, anatomy and physiology of the visual and auditiory systems, color vision, depth perception, motion perception, stereopsis, visual recognition, pitch and loudness perception, speech perception, and reorganization of the visual system in the blind.
Last offered: Autumn 2022 | UG Reqs: GER: DB-NatSci, WAY-SI, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints