2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1101 - 1110 of 9648 results for: ...

BIOE 802: TGR Dissertation

(Staff)
Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit

BIOE 215: Physics-Based Simulation of Biological Structure

Modeling, simulation, analysis, and measurement of biological systems. Computational tools for determining the behavior of biological structures- from molecules to organisms. Numerical solutions of algebraic and differential equations governing biological processes. Simulation laboratory examples in biology, engineering, and computer science. Limited enrollment. Prerequisites: basic biology, mechanics (F=ma), ODEs, and proficiency in C or C++ programming.

BIOE 310: Systems Biology (BIOC 278, CS 278, CSB 278)

Complex biological behaviors through the integration of computational modeling and molecular biology. Topics: reconstructing biological networks from high-throughput data and knowledge bases. Network properties. Computational modeling of network behaviors at the small and large scale. Using model predictions to guide an experimental program. Robustness, noise, and cellular variation. Prerequisites: background in biology and mathematical analysis.

BIOE 331: Protein Engineering

The design and engineering of biomolecules emphasizing proteins, antibodies, and enzymes. Combinatorial methodologies, rational design, protein structure and function, and biophysical analyses of modified biomolecules. Clinically relevant examples from the literature and biotech industry. Prerequisite: basic biochemistry.

BIOE 334: Engineering Principles in Molecular Biology

The achievements and difficulties that exemplify the interface of theory and quantitative experiment. Topics include: bistability, cooperativity, robust adaptation, kinetic proofreading, analysis of fluctuations, sequence analysis, clustering, phylogenetics, maximum likelihood methods, and information theory. Sources include classic papers.

BIOE 386: Neuromuscular Biomechanics

The interplay between mechanics and neural control of movement. State of the art assessment through a review of classic and recent journal articles. Emphasis is on the application of dynamics and control to the design of assistive technology for persons with movement disorders.

BIOE 485: Modeling and Simulation of Human Movement (ME 485)

Direct experience with the computational tools used to create simulations of human movement. Lecture/labs on animation of movement; kinematic models of joints; forward dynamic simulation; computational models of muscles, tendons, and ligaments; creation of models from medical images; control of dynamic simulations; collision detection and contact models. Prerequisite: 281, 331A,B, or equivalent.

BIOHOPK 43: Plant Biology, Evolution, and Ecology

Introduction to biology in a marine context. Principles of plant biology: physiology, structure, diversity. Principles of evolution: macro and microevolution, population genetics. Ecology: the principles governing the distribution and abundance of organisms; population, community, and ecosystem ecology. Equivalent to BIO 43. Corequisite: BIOHOPK 44Y.
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci

BIOHOPK 44Y: Core Experimental Laboratory

Laboratory and field projects provide working familiarity with the concepts, organisms, and techniques of plant and evolutionary biology, and ecology. Emphasis is on hands-on experimentation in the marine environment, analysis of data, and written and oral presentation of the experiments. Equivalent to BIO 44Y. Corequisite: BIOHOPK 43.
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints