2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

41 - 50 of 146 results for: all courses

CSRE 180B: Introduction to Data Analysis (SOC 180B, SOC 280B)

Methods for analyzing and evaluating quantitative data in sociological research. Students will be taught how to run and interpret multivariate regressions, how to test hypotheses, and how to read and critique published data analyses.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-SocSci, WAY-AQR, WAY-SI | Grading: Letter (ABCD/NP)

EARTH 42: Landscapes and Tectonics of the San Francisco Bay Area (GEOLSCI 42)

Active faulting and erosion in the Bay Area, and its effects upon landscapes. Earth science concepts and skills through investigation of the valley, mountain, and coastal areas around Stanford. Faulting associated with the San Andreas Fault, coastal processes along the San Mateo coast, uplift of the mountains by plate tectonic processes, and landsliding in urban and mountainous areas. Field excursions; student projects.
Terms: Aut | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: Hilley, G. (PI)

EARTHSYS 11: Introduction to Geology (GEOLSCI 1)

Why are earthquakes, volcanoes, and natural resources located at specific spots on the Earth surface? Why are there rolling hills to the west behind Stanford, and soaring granite walls to the east in Yosemite? What was the Earth like in the past, and what will it be like in the future? Lectures, hands-on laboratories, in-class activities, and one field trip will help you see the Earth through the eyes of a geologist. Topics include plate tectonics, the cycling and formation of different types of rocks, and how geologists use rocks to understand Earth's history.
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

EARTHSYS 46Q: Environmental Impact of Energy Systems: What are the Risks? (GEOLSCI 46Q)

In order to reduce CO2 emissions and meet growing energy demands during the 21st Century, the world can expect to experience major shifts in the types and proportions of energy-producing systems. These decisions will depend on considerations of cost per energy unit, resource availability, and unique national policy needs. Less often considered is the environmental impact of the different energy producing systems: fossil fuels, nuclear, wind, solar, and other alternatives. One of the challenges has been not only to evaluate the environmental impact but also to develop a systematic basis for comparison of environmental impact among the energy sources. The course will consider fossil fuels (natural gas, petroleum and coal), nuclear power, wind and solar and consider the impact of resource extraction, refining and production, transmission and utilization for each energy source.
Terms: not given this year, last offered Winter 2016 | Units: 3 | UG Reqs: WAY-AQR | Grading: Letter (ABCD/NP)

EARTHSYS 101: Energy and the Environment (ENERGY 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended: MATH 21 or 42.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

EARTHSYS 104: The Water Course (GEOPHYS 70)

The Central Valley of California provides a third of the produce grown in the U.S., but has a desert climate, thus raising concerns about both food and water security. The pathway that water takes rainfall to the irrigation of fields (the water course) determines the quantity and quality of the available water. Working with various data sources (remote sensing, gauges, wells) allows us to model the water budget in the valley and explore the way in which recent droughts and increasing demand are impacting freshwater supplies.
Terms: not given this year, last offered Winter 2018 | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

EARTHSYS 110: Introduction to the foundations of contemporary geophysics (GEOPHYS 110)

Introduction to the foundations of contemporary geophysics. Topics drawn from broad themes in: whole Earth geodynamics, geohazards, natural resources, and enviroment. In each case the focus is on how the interpretation of a variety of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetics, and remote sensing) can be used to provide fundamental insight into the behavior of the Earth. Prerequisite: CME 100 or MA TH 51, or co-registration in either.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

EARTHSYS 113: Earthquakes and Volcanoes (GEOPHYS 90)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Segall, P. (PI)

EARTHSYS 140: The Energy-Water Nexus (GEOPHYS 80)

Energy, water, and food are our most vital resources constituting a tightly intertwined network: energy production requires water, transporting and treating water needs energy, producing food requires both energy and water. The course is an introduction to learn specifically about the links between energy and water. Students will look first at the use of water for energy production, then at the role of energy in water projects, and finally at the challenge in figuring out how to keep this relationship as sustainable as possible. Students will explore case examples and are encouraged to contribute examples of concerns for discussion as well as suggest a portfolio of sustainable energy options.
Terms: alternate years, given next year, last offered Spring 2014 | Units: 3 | UG Reqs: WAY-AQR | Grading: Letter or Credit/No Credit

EARTHSYS 141: Remote Sensing of the Oceans (EARTHSYS 241, ESS 141, ESS 241, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR | Grading: Letter or Credit/No Credit
Instructors: Arrigo, K. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints