2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

21 - 30 of 66 results for: BIO

BIO 127: Genomic approaches to the study of human disease (BIO 247, GENE 247)

This course will cover a range of genetic and genomic approaches to studying human phenotypic variation and disease. We will discuss the genetic basis of Mendelian and complex diseases, as well as clinical applications including prenatal testing, and pediatric and cancer diagnostics. The course will include lectures as well as critical reading and discussion of the primary literature. Prerequisite: BIO 82 or equivalent. Open to advanced undergraduate students.
Terms: Win | Units: 3

BIO 141: Biostatistics (STATS 141)

Introductory statistical methods for biological data: describing data (numerical and graphical summaries); introduction to probability; and statistical inference (hypothesis tests and confidence intervals). Intermediate statistical methods: comparing groups (analysis of variance); analyzing associations (linear and logistic regression); and methods for categorical data (contingency tables and odds ratio). Course content integrated with statistical computing in R.
Terms: Win | Units: 5 | UG Reqs: GER:DB-Math, WAY-AQR

BIO 143: Quantitative Methods for Marine Ecology and Conservation (BIO 243, CEE 164, CEE 264H, EARTHSYS 143H, EARTHSYS 243H, OCEANS 143)

NOTE: This course will be taught in-person on main campus, in hybrid format with Zoom options. The goal of this course is to learn the foundations of ecological modeling with a specific (but not exclusive) focus on marine conservation and sustainable exploitation of renewable resources. Students will be introduced to a range of methods - from basic to advanced - to characterize population structure, conduct demographic analyses, estimate extinction risk, identify temporal trends and spatial patterns, quantify the effect of environmental determinants and anthropogenic pressures on the dynamics of marine populations, describe the potential for adaptation to climate change. This course will emphasize learning by doing, and will rely heavily on practical computer laboratories, in R and/or Phyton, based on data from our own research activities or peer reviewed publications. Students with a background knowledge of statistics, programming and calculus will be most welcome. Formally BIOHOPK 143H and 243H.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR, WAY-FR

BIO 145: Animal Behavior (BIO 245)

Animal behavior with an emphasis on social and collective behavior. How do animals interact with each other and the rest of the world around them? This is a project-based course in a seminar format, including class discussion of journal articles, and independent research projects based on observing the behavior of animals on campus. Prerequisites suggested: Biology or Human Biology core or BIO 81 and 85 or consent of instructor; BIO/ES 30. Recommended: some background in statistics.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Gordon, D. (PI)

BIO 149: The Neurobiology of Sleep (BIO 249, HUMBIO 161, PSYC 149, PSYC 261)

The neurochemistry and neurophysiology of changes in brain activity and conscious awareness are associated with changes in the sleep/wake state. Behavioral and neurobiological phenomena include sleep regulation, sleep homeostasis, circadian rhythms, sleep disorders, sleep function, and the molecular biology of sleep. Preference to seniors and graduate students.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 160: Developmental Biology

This course will cover the molecular mechanisms underlying the generation of diverse cell types and tissues during embryonic and post-embryonic animal development. Topics include the role of cell-cell communication in controlling developmental decisions, the organization and patterning of large groups of cells via morphogen signaling, the specification of individual cell types, and the role of stem cells in development. The course emphasizes the experimental logic and methods of research in developmental biology and includes discussions of research papers.
Terms: Win | Units: 4

BIO 165: Quantitative Approaches in Modern Biology (BIO 265)

Modern research approaches tightly integrate experimentation with data analysis and mathematical modeling to provide unprecedented insights into the organization and functioning of living systems. This course explores the quantitative basis of major cellular processes and their coordination to form a cohesive physiological entity that is capable of rapid growth and acclimation to changing environments. Weekly lectures will be accompanied by 'dry lab sessions' in which students analyze experimental data sets and discuss the challenges of accomplishing rigorous and reproducible research. As such, students will actively develop a fundamental skill set of quantitative biology which includes knowledge in coding, dynamical systems modeling, and statistics. Assumes basic (but not advanced) familiarity with math, e.g. MATH51. Enrollment by permission of the professor, apply at https://forms.gle/j6ocJs8fQFPK1GGLA.
Terms: Win | Units: 3

BIO 182: Modeling Cultural Evolution (BIO 282)

Seminar. Quantitative models for the evolution of socially transmitted traits. Rates of change of learned traits in populations and patterns of cultural diversity as a function of innovation and cultural transmission. Learning in constant and changing environments. Possible avenues for gene-culture coevolution.
Terms: Win | Units: 3
Instructors: Feldman, M. (PI)

BIO 185: Where the Wild Things Are: The Ecology and Ethics of Conserving Megafauna (DLCL 170, EALC 170, EARTHSYS 170, GLOBAL 170)

Under conditions of global environmental change and mass extinction, how will humanity share the planet with wildlife? This course invites undergraduate students to consider this question under the guidance of two biologists and a literary scholar. We will engage with a range of interdisciplinary scholarship on how humans seek to study, understand, exploit, protect, and empathize with charismatic megafauna. We ask how regional differences in culture, political economy, and ecology shape conservation efforts.
Terms: Win | Units: 3 | UG Reqs: WAY-ER, WAY-SMA

BIO 186: Archaeobotany (ARCHLGY 126, ARCHLGY 226, BIO 286)

Archaeobotany, also known as paleoethnobotany, is the study of the interrelationships of plants and humans through the archaeological record. Knowledge and understanding of Archaeobotany sufficient to interpret, evaluate, and understand archaeobotanical data. Dominant approaches in the study of archaeobotanical remains: plant macro-remains, pollen, phytoliths, and starch grains in the identification of diet and environmental reconstruction.
Terms: Win | Units: 5 | UG Reqs: WAY-SMA
Instructors: Grauer, K. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints