2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

41 - 50 of 81 results for: CHEMENG

CHEMENG 320: Chemical Kinetics and Reaction Engineering

Theoretical and experimental tools useful in understanding and manipulating reactions mediated by small-molecules and biological catalysts. Theoretical: first classical chemical kinetics and transition state theory; then RRKM theory and Monte Carlo simulations. Experimental approaches include practical application of modern spectroscopic techniques, stopped-flow measurements, temperature-jump experiments, and single-molecule approaches to chemical and biological systems. Both theory and application are framed with regard to systems of particular interest, including industrially relevant enzymes, organometallic catalysts, heterogeneous catalysis, electron transfer reactions, and chemical kinetics within living cells.
Terms: Spr | Units: 3

CHEMENG 340: Molecular Thermodynamics

Classical thermodynamics and quantum mechanics. Development of statistical thermodynamics to address the collective behavior of molecules. Establishment of theories for gas, liquid, and solid phases, including phase transitions and critical behavior. Applications include electrolytes, ion channels, surface adsorption, ligand binding to proteins, hydrogen bonding in water, hydrophobicity, polymers, and proteins.
Terms: Aut | Units: 3

CHEMENG 345: Fundamentals and Applications of Spectroscopy (PHOTON 345)

Development of theoretical approaches to spectroscopy, including spectroscopic transitions, transition probabilities, and selection rules. Application to photon and electron spectroscopies of the gas and solid phases. Topics: rotational spectroscopy; infrared and Raman vibrational spectroscopies; fluorescence spectroscopy; Auger, x-ray and ultraviolet photoelectron spectroscopies. Prerequisite: CHEM 271 or course in quantum mechanics.
Terms: Aut | Units: 3

CHEMENG 355: Advanced Biochemical Engineering (BIOE 355)

Combines biological knowledge and methods with quantitative engineering principles. Quantitative review of biochemistry and metabolism; recombinant DNA technology and synthetic biology (metabolic engineering). The production of protein pharaceuticals as a paradigm for the application of chemical engineering principles to advanced process development within the framework of current business and regulatory requirements. Prerequisite: CHEMENG 181 (formerly 188) or BIOSCI 41, or equivalent.
Terms: Spr | Units: 3

CHEMENG 399: Graduate Research Rotation in Chemical Engineering

Introduction to graduate level laboratory and theoretical work. Performance in this course comprises part of the mandatory evaluation for pre-candidacy standing and suitability to continue in the chemical engineering Ph.D. program.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 6 times (up to 6 units total)

CHEMENG 410: Public Communication of Research

Develop skills for communicating complex science to the public through writing, video, and public speaking. Learn how to work with the media to explain scientific discoveries without overselling the science. Work in small groups and one-on-one with writers and guest speaker; develop a short written piece and video explaining own research; develop skills that will translate to future scientific projects. Open to graduate students in the biosciences, chemistry, and engineering. Enrollment limited to 20.
Terms: Aut | Units: 1

CHEMENG 432: Electrochemical Energy Conversion

Electrochemistry is playing an increasingly important role in renewable energy. This course aims to cover the fundamentals of electrochemistry, and then build on that knowledge to cover applications of electrochemistry in energy conversion. Topics to be covered include fuel cells, solar water-splitting, CO2 conversion to fuels and chemicals, batteries, redox flow cells, and supercapacitors. Prerequisites: CHEM 31AB or 31 X, CHEM 33, CHEM 171, CHEM 175 or CHEMENG 170, or equivalents. Recommended: CHEM 173.
Last offered: Winter 2015

CHEMENG 442: Structure and Reactivity of Solid Surfaces

The structure of solid surfaces including experimental methods for determining the structure of single crystal surfaces. The adsorption of molecules on these surfaces including the thermodynamics of adsorption processes, surface diffusion, and surface reactions. Molecular structure of adsorbates. Current topics in surface structure and reactivity, including systems for heterogeneous catalysis and electronic materials.
Last offered: Spring 2013

CHEMENG 444: Electronic Structure Theory and Applications to Chemical Kinetics (ENERGY 256)

Fundamentals of electronic structure theory as it applies to chemical reaction kinetics in homogeneous and heterogeneous reaction systems. Development and application of the theory of chemical kinetics, including traditional and harmonic transition state theories. Relationships between thermodynamics and kinetics to overall mechanism predictions. Lab involves chemical modeling including _ab initio_ electronic structure calculations (Hartree-Fock, configuration interaction, coupled cluster, and many-body perturbation theory) and thermodynamic predictions. DFT calculations for catalysis applications are also covered. Prerequisite: quantum mechanics.
Terms: Win | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints