2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

91 - 100 of 183 results for: EE

EE 300: Master's Thesis and Thesis Research

Independent work under the direction of a department faculty. Written thesis required for final letter grade. The continuing grade 'N' is given in quarters prior to thesis submission. See 390 if a letter grade is not appropriate. Course may be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
Instructors: Aghajan, H. (PI) ; Allison, D. (PI) ; Apostolopoulos, J. (PI) ; Bahai, A. (PI) ; Baker, M. (PI) ; Bambos, N. (PI) ; Beasley, M. (PI) ; Binford, T. (PI) ; Boneh, D. (PI) ; Bosi, M. (PI) ; Boyd, S. (PI) ; Bravman, J. (PI) ; Bube, R. (PI) ; Byer, R. (PI) ; Cheriton, D. (PI) ; Chidsey, C. (PI) ; Cioffi, J. (PI) ; Cover, T. (PI) ; Cox, D. (PI) ; DaRosa, A. (PI) ; Dally, B. (PI) ; Dasher, R. (PI) ; De-Micheli, G. (PI) ; Dill, D. (PI) ; Dutton, R. (PI) ; El Gamal, A. (PI) ; Emami-Naeini, A. (PI) ; Enge, P. (PI) ; Engler, D. (PI) ; Eshleman, V. (PI) ; Fan, S. (PI) ; Flynn, M. (PI) ; Franklin, G. (PI) ; Fraser-Smith, A. (PI) ; Garcia-Molina, H. (PI) ; Gibbons, F. (PI) ; Gibbons, J. (PI) ; Gill, J. (PI) ; Girod, B. (PI) ; Glover, G. (PI) ; Goldsmith, A. (PI) ; Goodman, J. (PI) ; Gorinevsky, D. (PI) ; Gray, R. (PI) ; Guibas, L. (PI) ; Hanrahan, P. (PI) ; Harris, J. (PI) ; Harris, S. (PI) ; Hashemi, H. (PI) ; Heeger, D. (PI) ; Helliwell, R. (PI) ; Hennessy, J. (PI) ; Hesselink, L. (PI) ; Horowitz, M. (PI) ; Howe, R. (PI) ; Inan, U. (PI) ; Kahn, J. (PI) ; Kailath, T. (PI) ; Kazovsky, L. (PI) ; Khuri-Yakub, B. (PI) ; Kiehl, R. (PI) ; Kim, B. (PI) ; Kino, G. (PI) ; Kovacs, G. (PI) ; Koza, J. (PI) ; Kozyrakis, C. (PI) ; Lall, S. (PI) ; Lam, M. (PI) ; Lee, T. (PI) ; Leeson, D. (PI) ; Levis, P. (PI) ; Levoy, M. (PI) ; Linscott, I. (PI) ; Long, E. (PI) ; Luckham, D. (PI) ; Macovski, A. (PI) ; Manoharan, H. (PI) ; Marcus, B. (PI) ; McCluskey, E. (PI) ; McKeown, N. (PI) ; Melen, R. (PI) ; Meng, T. (PI) ; Miller, D. (PI) ; Mitchell, J. (PI) ; Mitra, S. (PI) ; Montanari, A. (PI) ; Murmann, B. (PI) ; Napel, S. (PI) ; Narasimha, M. (PI) ; Ng, A. (PI) ; Nishi, Y. (PI) ; Nishimura, D. (PI) ; Olukotun, O. (PI) ; Osgood, B. (PI) ; Paulraj, A. (PI) ; Pauly, J. (PI) ; Pease, R. (PI) ; Pelc, N. (PI) ; Peumans, P. (PI) ; Pianetta, P. (PI) ; Plummer, J. (PI) ; Popelka, G. (PI) ; Powell, J. (PI) ; Prabhakar, B. (PI) ; Pratt, V. (PI) ; Quate, C. (PI) ; Reis, R. (PI) ; Rosenblum, M. (PI) ; Saraswat, K. (PI) ; Saxena, N. (PI) ; Shahidi, R. (PI) ; Shaw, H. (PI) ; Shen, Z. (PI) ; Shenoy, K. (PI) ; Siegel, M. (PI) ; Siegman, A. (PI) ; Smith, J. (PI) ; Solgaard, O. (PI) ; Solomon, G. (PI) ; Spielman, D. (PI) ; Stinson, J. (PI) ; Thompson, N. (PI) ; Thrun, S. (PI) ; Tobagi, F. (PI) ; Tomlin, C. (PI) ; Tyler, G. (PI) ; Ullman, J. (PI) ; Van Roy, B. (PI) ; Vishnu, M. (PI) ; Vuckovic, J. (PI) ; Wakerly, J. (PI) ; Walt, M. (PI) ; Wandell, B. (PI) ; Wang, S. (PI) ; Weissman, T. (PI) ; Wenstrand, J. (PI) ; White, R. (PI) ; Widom, J. (PI) ; Widrow, B. (PI) ; Wiederhold, G. (PI) ; Wong, H. (PI) ; Wong, S. (PI) ; Wooley, B. (PI) ; Yamamoto, Y. (PI) ; Zebker, H. (PI)

EE 304: Neuromorphics: Brains in Silicon (BIOE 313)

This course introduces neuromorphic system design, starting at the device level, going through the circuit level, and ending up at the system level. At the device level, it covers MOS transistor operation in the subthreshold region. At the circuit level, it covers silicon neuron and synapse design. And at the system level, it covers to reroutable interconnection. At the end of the course, you will understand how various neuromorphic architectures¿ area and energy use scale with network size. Prerequisites: EE114 & EE108A.
Terms: Spr | Units: 3
Instructors: Boahen, K. (PI)

EE 308: Advanced Circuit Techniques

Design of advanced analog circuits at the system level, including switching power converters, amplitude-stabilized and frequency-stabilized oscillators, voltage references and regulators, power amplifiers and buffers, sample-and-hold circuits, and application-specific op-amp compensation. Approaches for finding creative design solutions to problems with difficult specifications and hard requirements. Emphasis on feedback circuit techniques, design-oriented thinking, and hands-on experience with modern analog building blocks. Several designs will be built and evaluated, along with associated laboratory projects.
Terms: Spr | Units: 3
Instructors: Lundberg, K. (PI)

EE 309: Semiconductor Memory Devices and Technology

The functionality and performance of ULSI systems are increasingly dependent upon the characteristics of the memory subsystem. This course introduces the student to various memory devices: SRAM, DRAM, NVRAM (non-volatile memory). This course will cover various aspects of semiconductor memories, including basic operation principles, device design considerations, device scaling, device fabrication, memory array addressing and readout circuits. Various cell structures (e.g. 1T-1C, 6T, 4T, 1T-1R, 0T-1R, 1S-1R, floating gate FLASH, SONOS, NROM), and memory organization (open bit-line, folded bit-line, NAND, NOR, cross-point etc.). This course will include a survey of new memory concepts (e.g. magnetic tunnel junction memory (MRAM, SST-RAM), ferroelectric memory (FRAM), phase change memory (PCM), metal oxide resistive switching memory (RRAM), nanoconductive bridge memory (CBRAM)). Offered Alternate years. Pre-requisite: EE 216. Preferred: EE 316.
Terms: Aut | Units: 3
Instructors: Wong, H. (PI)

EE 311: Advanced Integrated Circuits Technology

What are the practical and fundamental limits to the evolution of the technology of modern MOS devices and interconnects? How are modern devices and circuits fabricated and what future changes are likely? Advanced techniques and models of MOS devices and back-end (interconnect and contact) processing. What are future device structures and materials to maintain progress in integrated electronics? MOS front-end and back-end process integration. Prerequisites: EE212, EE216 or equivalent.
Terms: Spr | Units: 3
Instructors: Saraswat, K. (PI)

EE 313: Digital MOS Integrated Circuits

Looks a little more deeply at how digital circuits operate, what makes a gate digital, and how to "cheat" to improve performance or power. To aid this analysis we create a number of different models for MOS transistors and choose the simplest one that can explain our the circuit's operation, using both hand and computer analysis. We explore static, dynamic, pulse-mode, and current mode logic, and show how they are are used in SRAM design. Topics include sizing for min delay, noise and noise margins, power dissipation. The class uses memory design (SRAM) as a motivating example. DRAM and EEPROM design issues are also covered. Prerequisites: 101B, 108A. Recommended: 271.
Terms: Win | Units: 3
Instructors: Horowitz, M. (PI)

EE 314A: RF Integrated Circuit Design

Design of RF integrated circuits for communications systems, primarily in CMOS. Topics: the design of matching networks and low-noise amplifiers at RF, mixers, modulators, and demodulators; review of classical control concepts necessary for oscillator design including PLLs and PLL-based frequency synthesizers. Design of low phase noise oscillators. Design of high-efficiency (e.g., class E, F) RF power amplifiers, coupling networks. Behavior and modeling of passive and active components at RF. Narrowband and broadband amplifiers; noise and distortion measures and mitigation methods. Overview of transceiver architectures. Prerequisite: EE214B.
Terms: Spr | Units: 3
Instructors: Lee, T. (PI)

EE 314B: Advanced RF Integrated Circuit Design

Analysis and design of modern communication circuits and systems with emphasize on design techniques for high-frequency (into mm-wave) ICs. Topics include MOS, bipolar, and BiCMOS high-frequency integrated circuits, including power amplifiers, extremely wideband amplifiers, advanced oscillators, phase-locked loops and frequency-translation circuits. Design techniques for mm-wave silicon ICs (on-chip low-loss transmissions lines, unilateralization techniques, in-tegrated antennas, harmonic generation, etc) will also be studied. Prerequisite: EE314A.
Terms: Aut | Units: 3
Instructors: Arbabian, A. (PI)

EE 315B: VLSI Data Conversion Circuits

Architectural and circuit level design and analysis of integrated analog-to-digital and digital-to-analog interfaces in CMOS VLSI technology. Fundamental circuit elements such as sampling circuits and voltage comparators. Circuits and architectures for Nyquist-rate and oversampling analog-to-digital and digital-to-analog conversion; digital decimation and interpolation filters. Examples of calibration and digital enhancement techniques. Prerequisite: EE 214B. Recommended: EE 315A.
Terms: Aut | Units: 3
Instructors: Murmann, B. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints