2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

41 - 50 of 148 results for: MS&E

MS&E 238A: Leading Trends in Information Technology

Focuses on new trends and disruptive technologies in IT. Emphasis on the way technologies create a competitive edge and generate business value. Broad range of views presented by guest speakers, including top level executives of technology companies, and IT executives (e.g. CIOs) of Fortune 1000 companies. Special emphasis in technologies such as Virtualization, Cloud Computing, Security, Mobility and Unified Communications.
Last offered: Summer 2014

MS&E 240: Accounting for Managers and Entrepreneurs (MS&E 140)

Non-majors and minors who have taken or are taking elementary accounting should not enroll. Introduction to accounting concepts and the operating characteristics of accounting systems. The principles of financial and cost accounting, design of accounting systems, techniques of analysis, and cost control. Interpretation and use of accounting information for decision making. Designed for the user of accounting information and not as an introduction to a professional accounting career. Enrollment limited. Admission by order of enrollment.
Terms: Aut, Win, Sum | Units: 3-4
Instructors: Stanton, F. (PI)

MS&E 241: Economic Analysis

Principal methods of economic analysis of the production activities of firms, including production technologies, cost and profit, and perfect and imperfect competition; individual choice, including preferences and demand; and the market-based system, including price formation, efficiency, and welfare. Practical applications of the methods presented. See 341 for continuation of 241. Recommended: 211, ECON 50.
Terms: Win | Units: 3-4
Instructors: Sweeney, J. (PI)

MS&E 243: Energy and Environmental Policy Analysis

Concepts, methods, and applications. Energy/environmental policy issues such as automobile fuel economy regulation, global climate change, research and development policy, and environmental benefit assessment. Group project. Prerequisite: MS&E 241 or ECON 50, 51.
Terms: Spr | Units: 3
Instructors: Sweeney, J. (PI)

MS&E 244: Economic Growth and Development

Formerly 249. What generates economic growth. Emphasis is on theory accompanied by intuition, illustrated with country cases. Topics: the equation of motion of an economy; optimal growth theory; calculus of variations and optimal control approaches; deriving the Euler and Pontriaguine equations from economic reasoning. Applications: former planned economies in Russia and E. Europe; the present global crisis: causes and consequences; a comparative study of India and China. The links between economic growth and civilization; the causes of the rise and decline of civilizations; lessons for the future. Intended for graduate students. Prerequisite: multivariate calculus and permission of instructor. To receive permission, submit an application at http://web.stanford.edu/~lcottle/forms/244app.fb
Terms: Sum | Units: 3

MS&E 245A: Investment Science

Formerly MS&E 242. Introduction to the basic concepts of modern quantitative finance and investments. Focus is on basic principles and how they are applied in practice. Topics: basic interest rates; evaluating investments: present value and internal rate of return; fixed-income markets: bonds, yield, duration, portfolio immunization; term structure of interest rates; measuring risk: volatility and value at risk; designing optimal security portfolios; the capital asset pricing model. Group projects involving financial market data. No prior knowledge of finance required. Appropriate for engineering or science students wishing to apply their quantitative skills to develop a basic understanding of financial modeling and markets. Prerequisite: basic preparation in probability, statistics, and optimization.
Terms: Aut | Units: 3
Instructors: Giesecke, K. (PI)

MS&E 245B: Advanced Investment Science

Formerly MS&E 342. Topics: forwards and futures contracts, continuous and discrete time models of stock price behavior, geometric Brownian motion, Ito's lemma, basic options theory, Black-Scholes equation, advanced options techniques, models and applications of stochastic interest rate processes, and optimal portfolio growth. Computational issues and general theory. Teams work on independent projects. Prerequisite: 242.
Terms: Win | Units: 3
Instructors: Ohlrogge, M. (PI)

MS&E 245G: Finance for Non-MBAs (ECON 135)

For graduate students and advanced undergraduates. The foundations of finance; applications in corporate finance and investment management. Financial decisions made by corporate managers and investors with focus on process valuation. Topics include criteria for investment decisions, valuation of financial assets and liabilities, relationships between risk and return, market efficiency, and the valuation of derivative securities. Corporate financial instruments including debt, equity, and convertible securities. Equivalent to core MBA finance course, FINANCE 220. Prerequisites: ECON 51, or ENGR 60, or equivalent; ability to use spreadsheets, and basic probability and statistics concepts including random variables, expected value, variance, covariance, and simple estimation and regression.
Instructors: Vanasco, V. (PI)

MS&E 246: Financial Risk Management

This course provides an introduction to the measurement and management of financial risk. Topics include risk classification, regulatory framework, risk measures, estimation, capital allocation, derivatives hedging, credit portfolio risk, factor models, risk analysis of mortgages and mortgage backed securities, peer-to-peer lending risk. Data-driven group projects. Prerequisite: 245A or similar.
Terms: Win | Units: 3
Instructors: Giesecke, K. (PI)

MS&E 250A: Engineering Risk Analysis

The techniques of analysis of engineering systems for risk management decisions involving trade-offs (technical, human, environmental aspects). Elements of decision analysis; probabilistic risk analysis (fault trees, event trees, systems dynamics); economic analysis of failure consequences (human safety and long-term economic discounting); and case studies such as space systems, nuclear power plants, and medical systems. Public and private sectors. Prerequisites: probability, decision analysis, stochastic processes, and convex optimization.
Terms: Win | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints