2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

221 - 230 of 337 results for: all courses

HUMBIO 161: The Neurobiology of Sleep (BIO 149, BIO 249, PSYC 149, PSYC 261)

The neurochemistry and neurophysiology of changes in brain activity and conscious awareness are associated with changes in the sleep/wake state. Behavioral and neurobiological phenomena include sleep regulation, sleep homeostasis, circadian rhythms, sleep disorders, sleep function, and the molecular biology of sleep. Preference to seniors and graduate students.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

LINGUIST 105: Phonetics (LINGUIST 205A)

Every time you speak a word, you say it differently than the time before. Getting all the movements used during speech production to produce an exact repetition of a word is nearly impossible. Your friends and family also vary in how they say words, and this variation differs across speech styles, emotions, and social communities. Imagine that. Our minds encounter thousands of different productions of a single word, but somehow identify it as one word, and not another. Phonetics is the systematic study of the articulation, acoustics, and perception in speech and can help us explain how different talkers vary their speech, how information from speech is used by listeners to understand one another, and how listeners store social and linguistic information in memory. Through lectures, class activities, and weekly lab assignments, this class highlights both the complexity of the physical nature of speech production, how we can understand the resulting acoustic signal, and how that signal i more »
Every time you speak a word, you say it differently than the time before. Getting all the movements used during speech production to produce an exact repetition of a word is nearly impossible. Your friends and family also vary in how they say words, and this variation differs across speech styles, emotions, and social communities. Imagine that. Our minds encounter thousands of different productions of a single word, but somehow identify it as one word, and not another. Phonetics is the systematic study of the articulation, acoustics, and perception in speech and can help us explain how different talkers vary their speech, how information from speech is used by listeners to understand one another, and how listeners store social and linguistic information in memory. Through lectures, class activities, and weekly lab assignments, this class highlights both the complexity of the physical nature of speech production, how we can understand the resulting acoustic signal, and how that signal is interpreted and understood by listeners. By the end of this course, you will be able to (1) look at a visual representation of speech and understand what you are looking at; (2) manipulate speech samples to understand how listeners experience language and categorize different speech sounds; (3) understand the processes involved in articulating speech sounds; (4) explain how linguistic segments interact with cues to emotion, gender, and other macro-social attributes; and (5) identify the ways an understanding of speech variation can be used to advance our understanding of spoken language understanding my humans and machines. We will be using the software program Praat (https://www.fon.hum.uva.nl/praat/) weekly, beginning the first week of class. Please download the program and have it installed on your computer before class begins.
Terms: Win | Units: 4 | UG Reqs: GER:DB-SocSci, WAY-SMA

MATSCI 81N: Bioengineering Materials to Heal the Body

Preference to freshmen. Real-world examples of materials developed for tissue engineering and regenerative medicine therapies. How scientists and engineers design new materials for surgeons to use in replacing body parts such as damaged heart or spinal cord tissue. How cells interact with implanted materials. Students identify a clinically important disease or injury that requires a better material, proposed research approaches to the problem, and debate possible engineering solutions.
Last offered: Spring 2023 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 83N: Great Inventions That Matter

This introductory seminar starts by illuminating on the general aspects of creativity, invention, and patenting in engineering and medicine, and how Stanford University is one of the world's foremost engines of innovation. We then take a deep dive into some great technological inventions which are still playing an essential role in our everyday lives, such as fiber amplifier, digital compass, computer memory, HIV detector, personal genome machine, cancer cell sorting, brain imaging, and mind reading. The stories and underlying materials and technologies behind each invention, including a few examples by Stanford faculty and student inventors, are highlighted and discussed. A special lecture focuses on the public policy on intellectual properties (IP) and the resources at Stanford Office of Technology Licensing (OTL). Each student will have an opportunity to present on a great invention from Stanford (or elsewhere), or to write a (mock) patent disclosure of his/her own ideas.
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA
Instructors: Wang, S. (PI)

MATSCI 86N: Metalheads of Modern Science

This seminar will explore where we find metals in science and technology today. Starting with the blacksmiths and metallurgists of ancient history, we will introduce the scientific innovations that have enabled today's technology. We will then explore how today's technology uses metals in new and innovative ways - far beyond the metallurgy of old. Students will learn how metals in their bodies can be used for diagnostics and treatments, how metals in geology can show us how planets form, how new metallic tools allow us to 3D print aircraft engines, and more! This will introduce students to the science of metals and explore the career paths that can follow from these technologies.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA

MATSCI 90Q: Resilience, Transformation, and Equilibrium: the Science of Materials

In this course, we will explore the fundamentals of the kinetics of materials while relating them to different phenomena that we observe in our everyday lives. We will study the mechanisms and processes by which materials obtain the mechanical, electronic, and other properties that make them so useful to us. How can we cool water below freezing and keep it from turning into ice? Why is it that ice cream that has been in the freezer for too long does not taste as good? What are crystal defects and why do they help create some of the most useful (semiconductors) and beautiful (gemstones) things we have? This introductory seminar is open to all students, and prior exposure to chemistry, physics, or calculus is NOT required.
Last offered: Spring 2022 | UG Reqs: WAY-SMA

MATSCI 127: Investigating Ancient Materials (ANTHRO 180B, ANTHRO 280B, ARCHLGY 180, ARCHLGY 280, MATSCI 227)

If you wish to enroll, please use the linked form to request instructor consent: https://tinyurl.com/AncientMaterials - This course examines how concepts and methods from materials science are applied to the analysis of archaeological artifacts, with a focus on artifacts made from inorganic materials (ceramics and metals). Coverage includes chemical analysis, microscopy, and testing of physical properties, as well as various research applications within anthropological archaeology. Students will learn how to navigate the wide range of available analytical techniques in order to choose methods that are appropriate to the types of artifacts being examined and that are capable of answering the archaeological questions being asked. ----- If you wish to enroll, please use the linked form to request instructor consent: https://tinyurl.com/AncientMaterials For full consideration, this form must be submitted by Monday, September 4th.
Terms: Aut | Units: 3-4 | UG Reqs: WAY-SI, WAY-SMA
Instructors: Chastain, M. (PI)

MATSCI 142: Quantum Mechanics of Nanoscale Materials

Introduction to quantum mechanics and its application to the properties of materials. No prior background beyond a working knowledge of calculus and high school physics is presumed. Topics include: The Schrodinger equation and applications to understanding of the properties of quantum dots, semiconductor heterostructures, nanowires, and bulk solids. Tunneling processes and applications to nanoscale devices; the scanning tunneling microscope, and quantum cascade lasers. Simple models for the electronic properties and band structure of materials including semiconductors, insulators, and metals, and applications to semiconductor devices. An introduction to quantum computing. Recommended: ENGR 50 or equivalent introductory materials science course. (Formerly 157)
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 143: Materials Structure and Characterization

This course introduces the theory and application of characterization techniques used to examine the atomic structure of materials. Students will learn to classify the structure of materials such as semiconductors, ceramics, and metals according to the principles of crystallography. Characterization methods commonly used in academic and industrial research, including X-ray diffraction and electron microscopy, will be demonstrated along with their application to the analysis of nanostructures. Prerequisites: ENGR 50 or equivalent introductory materials science course.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 144: Thermodynamic Evaluation of Green Energy Technologies

Understand the thermodynamics and efficiency limits of modern green technologies such as carbon dioxide capture from air, fuel cells, batteries, and geothermal power. Recommended: ENGR 50 or equivalent introductory materials science course. (Formerly 154)
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Chueh, W. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints