Print Settings
 

ME 1A: ME THEORY

| Units: 0-60

ME 10AX: Design Thinking and the Art of Innovation

Design Thinking and the Art of Innovation is a hands-on seminar that introduces students to the multi-disciplinary practice of product, service, and experience design through the lenses of both art and engineering. A project-based, studio-driven class promises a deep dive into Design Thinking, Stanford's unique approach to problem finding and problem solving. Along with a survey of tools such as need finding and ethnography, structured brainstorming, rapid prototyping, visual communication, and story-telling, the class will include thought provoking and inspirational field trips to San Francisco's MOMA and other Bay Area museums, The San Francisco Ferry Building, and IDEO, the internationally renowned design and innovation firm headquartered in Palo Alto.nnThis course is designed to introduce students to cutting edge techniques and processes used in the field of design. Through emphasis on design problems where aesthetics, technology, human behavior, and business needs overlap, students will both increase visual literacy and develop creative competence. The course provides an overview of contemporary professional design practice and exposes students to the world of design and the "wicked problems" that are the grist for the mill of design work.
Terms: Sum | Units: 2 | UG Reqs: WAY-CE

ME 12N: The Jet Engine

Preference to freshmen. How a jet engine works; the technologies and analytical techniques required to understand them. Dynamics, thermodynamics, turbomachinery, combustion, advanced materials, cooling technologies, and control systems. Visits to research laboratories, examination of a partially disassembled engine, and probable operation of a small jet engine. Prerequisites: high school physics.
Last offered: Autumn 2012 | Units: 3 | UG Reqs: GER:DB-EngrAppSci

ME 14N: How Stuff Is Made

The design and engineering of products and processes, such as machining, fabric, food, and electrical goods. Tradeoffs in choice of materials, features, and process selection. Final project: students research and redesign the engineering and manufacturing aspects of a product and its processes with an eye toward sustainability. Includes several field trips to manufacturing facilities.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci

ME 18Q: Teamology: Creative Teams and Individual Development

Preference to sophomores. Roles on a problem solving team that best suit individual creative characteristics. Two teams are formed for teaching experientially how to develop less conscious abilities from teammates creative in those roles. Reinforcement teams have members with similar personalities; problem solving teams are composed of people with maximally different personalities.
Terms: Aut | Units: 3
Instructors: ; Wilde, D. (PI)

ME 20N: Haptics: Engineering Touch

Students in this class will learn how to build, program, and control haptic devices, which are mechatronic devices that allow users to feel virtual or remote environments. In the process, students will gain an appreciation for the capabilities and limitations of human touch, develop an intuitive connection between equations that describe physical interactions and how they feel, and gain practical interdisciplinary engineering skills related to robotics, mechanical engineering, electrical engineering, bioengineering, and computer science. In-class laboratories will give students hands-on experience in assembling mechanical systems, making circuits, programming Arduino microcontrollers, testing their haptic creations, and using Stanford¿s student prototyping facilities. The final project for this class will involve creating a novel haptic device that could be used to enhance human interaction with computers, mobile devices, or remote-controlled robots.
Terms: Aut | Units: 3
Instructors: ; Okamura, A. (PI)

ME 21N: Renaissance Machine Design

Preference to freshmen. Technological innovations of the 1400s that accompanied the proliferation of monumental art and architecture by Brunelleschi, da Vinci, and others who designed machines and invented novel construction, fresco, and bronze-casting techniques. The social and political climate, from the perspective of a machine designer, that made possible and demanded engineering expertise from prominent artists. Hands-on projectsto provide a physical understanding of Renaissance-era engineering challenges and introduce the pleasure of creative engineering design. Technical background not required.
| Units: 3 | UG Reqs: GER:DB-EngrAppSci

ME 23Q: The Worldly Engineer

Preference given to sophomores. Engineering, its practice and products placed in multi-disciplinary context. Topics include the history of the engineering profession and engineering education; cultural influences on design; the role of national and international public policy and economics; dependence on natural resources; environmental impact; contemporary workforce development. Emphasis is on cultivating an appreciation of these issues to enrich the educational and professional pursuit of engineering.
Terms: Spr | Units: 3
Instructors: ; Su, L. (PI)

ME 26N: Think Like a Designer

Introduces students to techniques designers use to create highly innovative solutions across domains. The project-based class will emphasize approaches to problem identification and problem solving. Topics include need-finding, structured brainstorming, synthesis, rapid prototyping, and visual communication; field trips to a local design firm, a robotics lab, and a machining lab. A secondary goal of the seminar is to introduce students to the pleasures of creative design and hands-on development of tangible solutions.
Terms: Aut | Units: 3
Instructors: ; Banerjee, B. (PI)

ME 29D: Design for Diversity: Collaboration by difference in digital age

The focus of this course is on applying design, technology, and social innovation to create an environment that fosters collaboration by difference. Students will learn how in a digital age their identities amplify and create unique opportunities for them to bring about social change. They will learn resocializing skills through somatic literacy to understand the other¿s point of view. By the end of the quarter they will demonstrate literacy in collaboration by difference and use design thinking tools to prototype a collaboratorium, a portable structure and process to create an appreciation of voice and value to be effective global leaders.
Terms: Win | Units: 2
Instructors: ; Waldron, K. (PI)

ME 70: Introductory Fluids Engineering

Elements of fluid mechanics as applied to engineering problems. Equations of motion for incompressible ideal flow. Hydrostatics. Control volume laws for mass, momentum, and energy. Bernoulli equation. Dimensional analysis and similarity. Flow in ducts. Boundary layer flows. Lift and drag. Lab experiment demonstrations. Prerequisites: ENGR 14 and 30.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 80: Mechanics of Materials

Mechanics of materials and deformation of structural members. Topics include stress and deformation analysis under axial loading, torsion and bending, column buckling and pressure vessels. Introduction to stress transformation and multiaxial loading. Prerequisite: ENGR 14.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 101: Visual Thinking

Lecture/lab. Visual thinking and language skills are developed and exercised in the context of solving design problems. Exercises for the mind's eye. Rapid visualization and prototyping with emphasis on fluent and flexible idea production. The relationship between visual thinking and the creative process. Enrollment limited to 60.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-CE

ME 103D: Engineering Drawing and Design

Designed to accompany 203. The fundamentals of engineering drawing including orthographic projection, dimensioning, sectioning, exploded and auxiliary views, assembly drawings, and SolidWorks. Homework drawings are of parts fabricated by the student in the lab. Assignments in 203 supported by material in 103D and sequenced on the assumption that the student is enrolled in both courses simultaneously.
Terms: Aut, Win, Spr | Units: 1

ME 103Q: Product Realization: Making is Thinking

Product Realization encompasses those processes required to transform a concept into the creation of a functional, useful, and beautiful product. In this project-based seminar, students develop product realization confidence and intuition using the rich array of tools available in the Product Realization Lab as well as industry-standard design engineering software programs and course readings in design/realization philosophy. Interactions with the Stanford design engineering community as well as field trips to iconic Bay area design engineering firms round out students' experience. Learning Goals: Build confidence in transforming concepts into products through foundational texts and rigorous exercises, master integrated design/realization software and tools through hands-on learning and practice, and engage with the Stanford design engineering community on campus and well beyond.
Terms: Spr | Units: 3 | UG Reqs: WAY-CE

ME 104: The Designer's Voice

Course helps students develop a point of view about their design career that will enable them to articulate their design vision, inspire a design studio, or infect a business with a culture of design-thinking. Focus on the integration of work and worldview, professional values, design language, and the development of the designer's voice. Includes seminar-style discussions, role-playing, short writing assignments, guest speakers, and individual mentoring and coaching. Participants will be required to keep a journal.
Terms: Aut | Units: 1 | Repeatable for credit

ME 104B: Designing Your Life

The course employs a design thinking approach to help students develop a point of view about their career. The course focuses on an introduction to design thinking, the integration of work and worldview, and practices that support vocation formation. Includes seminar-style discussions, role-playing, short writing assignments, guest speakers, and individual mentoring and coaching. Open to juniors and seniors of all majors. Admission to be confirmed by email to Axess registered students prior to first class session. More information at http://www.designingyourlife.org. Effective Autumn 2012, course is no longer repeatable for credit.
Terms: Aut, Win, Spr | Units: 2

ME 104S: Designing Your Stanford (EDUC 118S)

DYS uses a Design Thinking approach to help Freshmen and Sophomores learn practical tools and ideas to make the most of their Stanford experience. Topics include the purpose of college, major selection, educational wayfinding, and innovating college outcomes - all applied through an introduction to Design Thinking. This seminar class incorporates small group discussion, in-class activities, field exercises, personal reflection, and individual coaching. Admission to be confirmed by email to Axess registered students prior to first class session. More information at www.designingyourstanford.org.
Terms: Aut, Win, Spr | Units: 2

ME 10N: Form and Function of Animal Skeletons (BIOE 10N)

Preference to freshmen. The biomechanics and mechanobiology of the musculoskeletal system in human beings and other vertebrates on the level of the whole organism, organ systems, tissues, and cell biology. Field trips to labs.
| Units: 3 | UG Reqs: GER:DB-EngrAppSci

ME 110: Design Sketching

Freehand sketching, rendering, and design development. Students develop a design sketching portfolio for review by program faculty. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1-2 | Repeatable for credit

ME 112: Mechanical Systems Design

Lecture/lab. Characteristics of machine elements including gears, bearings, and shafts. Design for fatigue life. Electric motor fundamentals. Transmission design for maximizing output power or efficiency. Mechanism types, linkage analysis and kinematic synthesis. Team-based design projects emphasizing the balance of physical with virtual prototyping based on engineering analysis. Lab for dissection of mechanical systems and project design reviews. Prerequisites: 80, 101. Recommended: 203, ENGR 15.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Cutkosky, M. (PI)

ME 113: Mechanical Engineering Design

Capstone course. Mechanical engineering design is experienced by students as they work on team projects obtained from industry or other organizations. Prerequisites: 80,101,112, 203. Enrollment limited to ME majors.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Nelson, D. (PI)

ME 115A: Introduction to Human Values in Design

Lecture/lab. Introduces the central philosophy of the product design program, emphasizing the relation between technical and human values, the innovation process, and design methodology. Lab exercises include development of simple product concepts visualized in rapidly executed three-dimensional mockups. Prerequisite: 101.
Terms: Aut | Units: 3

ME 115B: Product Design Methods

Problem-finding, problem-solving, intermediate creativity methods and effective techniques for researching and presenting product concepts. Individual- and team-based design projects emphasizing advanced visual thinking and prototyping skills. Prerequisite: ME115A
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Edson, J. (PI)

ME 115C: Design and Business Factors

Design and Business Factors: Introduces business concepts critical to determining the success of new products and services. Students will learn to estimate the cost of R&D for new product development. Using financial analysis, ROI, and tollgates to reduce development risk will be explored using case studies and simulations. Students will develop a bill of materials and a profit and loss statement for a sample product concept, prototype a design consultancy, and create a business proposal for a proposed new product company.
Terms: Spr | Units: 3
Instructors: ; Burnett, W. (PI)

ME 11SC: The Art and Science of Measuring Fluid Flows

The roles of fluid flows in natural systems such as swimming protozoa and planet-forming nebulae, and technologies such as biomolecular assay devices and jet engines. The analytical background for fluid sciences. Phenomena such as shock waves and vortex formation that create flow patterns while challenging engineers. Visualization and measurement techniques to obtain full-field flow pattern information. The physics behind these technologies. Field trips; lab work. (Eaton)
| Units: 2

ME 120: History and Philosophy of Design

Major schools of 19th- and 20th-century design (Arts and Crafts movement, Bauhaus, Industrial Design, and postmodernism) are analyzed in terms of their continuing cultural relevance. The relation of design to art, technology, and politics; readings from principal theorists, practitioners, and critics; recent controversies in industrial and graphic design, architecture, and urbanism. Enrollment limited to 65.
Terms: Spr | Units: 3 | Repeatable for credit

ME 12SC: Hands-on Jet Engines

How jet engines transformed the world through intercontinental travel causing internationalization in daily life. Competition driving improvements in fuel economy, engine lifetime, noise, and emissions.
| Units: 2

ME 131A: Heat Transfer

The principles of heat transfer by conduction, convection, and radiation with examples from the engineering of practical devices and systems. Topics include transient and steady conduction, conduction by extended surfaces, boundary layer theory for forced and natural convection, boiling, heat exchangers, and graybody radiative exchange. Prerequisites: 70, ENGR 30. Recommended: intermediate calculus, ordinary differential equations.
Terms: Aut | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Eaton, J. (PI)

ME 131B: Fluid Mechanics: Compressible Flow and Turbomachinery

Engineering applications involving compressible flow: aircraft and rocket propulsion, power generation; application of mass, momentum, energy and entropy balance to compressible flows; variable area isentropic flow, normal shock waves, adiabatic flow with friction, flow with heat addition. Operation of flow systems: the propulsion system. Turbomachinery: pumps, compressors, turbines. Angular momentum analysis of turbomachine performance, centrifugal and axial flow machines, effect of blade geometry, dimensionless performance of turbomachines; hydraulic turbines; steam turbines; wind turbines. Compressible flow turbomachinery: the aircraft engine. Prerequisites: 70, ENGR 30.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Eaton, J. (PI)

ME 139: Educating Young STEM Thinkers (EDUC 139X, EDUC 239X, ME 231)

The course will introduce students to the design thinking process, the national conversations about the future of STEM careers, and provide opportunities to work with middle school students and K-12 teachers in STEM-based after-school activities and intercession camps. The course will be both theory and practice focused. The purpose is twofold; to provide reflection and mentoring opportunities for students to learn about pathways to STEM careers and to introduce mentoring opportunities with young STEM thinkers.
Terms: Win, Spr | Units: 3-5 | Repeatable 4 times (up to 20 units total)

ME 140: Advanced Thermal Systems

Capstone course. Thermal analysis and engineering emphasizing integrating heat transfer, fluid mechanics, and thermodynamics into a unified approach to treating complex systems. Mixtures, humidity, chemical and phase equilibrium, and availability. Labs apply principles through hands-on experience with a turbojet engine, PEM fuel cell, and hybrid solid/oxygen rocket motor. Use of MATLAB as a computational tool. Prerequisites: ENGR 30, ME 70, and 131A,B.
Terms: Spr | Units: 5 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Mitchell, R. (PI)

ME 15: Pre-field Course for Alternative Spring Break: Design for a Sustainable World

Preparation for Alternative Spring Break trip Design for a Sustainable World: Using the design method to create human-centered solutions to address the challenges of global poverty and sustainability. Limited to students participating in the Alternative Spring Break program. See http://asb.stanford.edu for more information.
| Units: 1

ME 16: Alternative Spring Break - From Classroom to Community: Science Education and Environmental Literacy

This Alternative Spring Break course and trip will examine K-12 science education in California. Though centered in the San Francisco Bay Area, we will be exploring different institutions throughout the state - schools, science museums, non-profit organizations - and their current contributions to the education of California's youth in STEM (Science, Technology, Engineering, Mathematics) fields. These institutions will help us explore the interaction between in-school and out-of-school learning, and the benefits of each. We will particularly focus on disparities (socioeconomic, regional, etc.) present in Californian science education, discussing their effects and how they can be remedied. The trip will involve conversations with teachers, students, and other professional educators centered around improvement to the current science education system in California. All told, we hope to explore the best methods for developing lasting interest and aptitude for science in California students to promote a brighter future.
| Units: 1

ME 161: Dynamic Systems, Vibrations and Control (ME 261)

(Graduate students only enroll in 261.) Modeling, analysis, and measurement of mechanical and electromechanical systems. Numerical and closed form solutions of ordinary differential equations governing the behavior of single and multiple degree of freedom systems. Stability, resonance, amplification and attenuation, and control system design. Demonstrations and laboratory experiments. Prerequisite: Calculus (differentiation and integration), ordinary differential equations (e.g., CME 102 or MATH53), basic linear algebra (determinants and solving linear equations), and familiarity with basic dynamics (F=m*a) and electronics (v=i*R). ME undergraduates must enroll for 4 units with lab. All others should enroll for 3 units without lab.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Mitiguy, P. (PI)

ME 177: Global Engineers' Education

A project based course for those who would like to use their engineering backgrounds to address real world challenges faced by underserved communities globally. In direct collaboration with an underserved community from a rural village in India, students will develop engineering solutions to the challenge of sanitation and hygiene. Focus will be on working with the community rather than for them. Concepts covered will include designing with what designers care about at the center, articulating and realizing individual and community aspirations, ethics of engaging with underserved communities, and methodology of working sustainably with an underserved community.
Terms: Spr | Units: 3
Instructors: ; Hariharan, B. (PI)

ME 17N: Robotics Imitating Nature

Preference to freshmen. The dream of constructing robots that duplicate the functional abilities of humans and/or other animals has been promulgated primarily by science fiction writers. But biological systems provide models for the designers of robots. Building electromechanical devices that perform locomotory and sensing functions similar to those of an animal as a way of learning about how biological systems function. Walking and running machines, and the problem of giving a robot the capability to respond to its environment.
| Units: 3

ME 181: Deliverables: A Mechanical Engineering Design Practicum

Deliverables is a class open to students from all backgrounds who are interested in learning about how the makers in the Product Realization Lab become the makers of the world. Each week, a recently graduated PRL TA (or PRL super-user) will return to Stanford to speak about the work that they have done since graduating and highlight an important skill they developed while in the PRL that has served them in their careers. Weekly projects will reflect with topics covered by the guest speaker (and then highlighted in a brief lecture that follows) and will represent a typical industry deliverable. These real world examples will both (a) reinforce important concepts learned in the PRL and (b) expose students to a typical "day-in-the-life" of these young engineers. For example, after hearing from an engineer working on under-water robotic systems, students will review gasket and O-ring fundamentals and then be asked to design, tolerance and provide a BOM for a watertight enclosure.
Terms: Spr | Units: 1-2

ME 19: Pre-field Course for Alternative Spring Break: Design for Social Change

Focus is on applying design, technology and innovation to catalyze social change. Topics include identifying social needs, learning different brainstorming methods, developing an applicable service model or product, prototyping, implementation, and reiteration. Reading and service components, followed by week-long Alternative Spring Break trip. See http://d4sc.blogspot.com. Enrollment limited to 12. May be repeated for credit.
| Units: 1 | Repeatable 1 times (up to 1 units total)

ME 191: Engineering Problems and Experimental Investigation

Directed study and research for undergraduates on a subject of mutual interest to student and staff member. Student must find faculty sponsor and have approval of adviser.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit
Instructors: ; Adams, J. (PI); Andriacchi, T. (PI); Banerjee, B. (PI); Barnett, D. (PI); Bazant, M. (PI); Beach, D. (PI); Beiker, S. (PI); Beiter, K. (PI); Both, T. (PI); Bowman, C. (PI); Bradshaw, P. (PI); Britos Cavagnaro, L. (PI); Burnett, W. (PI); Cai, W. (PI); Camarillo, D. (PI); Cantwell, B. (PI); Cappelli, M. (PI); Carryer, J. (PI); Carter, D. (PI); Chang, F. (PI); Chaudhuri, O. (PI); Cutkosky, M. (PI); Darve, E. (PI); Dauskardt, R. (PI); DeBra, D. (PI); Delp, S. (PI); Eaton, J. (PI); Edelman, J. (PI); Edwards, C. (PI); Evans, D. (PI); Farhat, C. (PI); Feiber, J. (PI); Gao, H. (PI); Gerdes, J. (PI); Goodson, K. (PI); Habif, S. (PI); Hanson, R. (PI); Hawthorne, G. (PI); Iaccarino, G. (PI); Ihme, M. (PI); Ishii, K. (PI); Jacobs, C. (PI); Johnston, J. (PI); Karanian, B. (PI); Kelley, D. (PI); Kembel, G. (PI); Kenny, T. (PI); Khatib, O. (PI); Kitchen, S. (PI); Kohn, M. (PI); Kruger, C. (PI); Kuhl, E. (PI); Leifer, L. (PI); Lele, S. (PI); Lentink, D. (PI); Levenston, M. (PI); Lew, A. (PI); Majumdar, A. (PI); Mani, A. (PI); Milroy, J. (PI); Mitchell, R. (PI); Mitiguy, P. (PI); Moin, P. (PI); Mungal, M. (PI); Nelson, D. (PI); Niemeyer, G. (PI); Okamura, A. (PI); Pinsky, P. (PI); Pitsch, H. (PI); Prinz, F. (PI); Pruitt, B. (PI); Rock, S. (PI); Roth, B. (PI); Roumani, N. (PI); Saffo, P. (PI); Salisbury, J. (PI); Santiago, J. (PI); Sather, A. (PI); Schox, J. (PI); Scott, W. (PI); Shaqfeh, E. (PI); Shaughnessy, S. (PI); Sheppard, S. (PI); Springer, G. (PI); Steele, C. (PI); Steinert, M. (PI); Street, B. (PI); Sturtz, M. (PI); Tang, S. (PI); Taylor, C. (PI); Toye, G. (PI); Utley, J. (PI); Waldron, K. (PI); Wang, H. (PI); Zajac, F. (PI); Zheng, X. (PI); Negrette, J. (GP)

ME 199A: Practical Training

For undergraduate students. Educational opportunities in high technology research and development labs in industry. Students engage in internship work and integrate that work into their academic program. Following internship work, students complete a research report outlining work activity, problems investigated, key results, and follow-up projects they expect to perform. Meets the requirements for curricular practical training for students on F-1 visas. Student is responsible for arranging own internship/employment and faculty sponsorship. Register under faculty sponsor's section number. All paperwork must be completed by student and faculty sponsor, as the Student Services Office does not sponsor CPT. Students are allowed only two quarters of CPT per degree program. Course may be repeated twice.
Terms: Sum | Units: 1 | Repeatable 2 times (up to 2 units total)
Instructors: ; Kelley, D. (PI)

ME 200: Judging Historical Significance Through the Automobile

This seminar is for students to learn how to assess the impact of historical importance through the lens of the automobile. Students will participate in discussions about measuring and judging historical importance from a number of perspectives - engineering, aesthetic, historical, etc. They will then decide on criteria and use these to be a part of a judging team at the Pebble Beach Concours d'Elegance. The Pebble Beach event is the leading concours for automobiles in the United States. Using the criteria established by the students, the judging team, including the students, will decide the recipient of the Stanford/Revs Automotive History Trophy for 2014 and have the opportunity to present it on the lawn at Pebble Beach Lodge on August 17th. By application only: Please visit http://revs.stanford.edu/course/703 for application and Q&A.
Terms: Spr | Units: 1

ME 201: Dim Sum of Mechanical Engineering

Introduction to research in mechanical engineering for M.S. students and upper-division undergraduates. Weekly presentations by current ME Ph.D. and second-year fellowship students to show research opportunities across the department. Strategies for getting involved in a research project.
Terms: Aut | Units: 1 | Repeatable 2 times (up to 2 units total)

ME 202: Mechaphonics: Smart Phone-Enabled Mechatronic Systems

Explore the use of smartphones and tablets as enabling components within modern mechatronic systems. Emphasis on leveraging Android resources (user interface, communications, sensors) in combination with the Arduino microcontroller platform to design and build complex mechatronic devices. Topics include: basic Android application development, Android communications, sensors, Arduino, Arduino peripherals. Large, open-ended team project. Android device and programming hardware required. Limited enrollment. Prerequisites: ME210, ME218, or permission of instructor.
Terms: Aut | Units: 3
Instructors: ; Ohline, M. (PI)

ME 203: Design and Manufacturing

Integrated experience involving need finding, product definition, conceptual design, detail design, prototype manufacture, public presentation of outcomes, archiving and intrepreting the product realization process and its results. Presents an overview of manufacturing processes crucial to the practice of design. Corequisite: 103D or CAD experience. Recommended: 101.
Terms: Aut, Win, Spr | Units: 4
Instructors: ; Beach, D. (PI)

ME 204A: Bicycle Design and Frame-Building

Lecture/lab. The engineering and artistic execution of designing and building a bicycle frame. Fundamentals of bicycle dynamics, handling, and sizing. Manufacturing processes. Films, guest lecturers, field trips. Each student designs and fabricates a custom bicycle frame. This course is now a two part course series ME204A&B. Limited enrollment. Prerequisite: 203 or equivalent.
Terms: Win | Units: 1

ME 204B: Bicycle Design and Frame-Building

The engineering and artistic execution of designing and building a bicycle frame. The fundamentals of bicycle dynamics, handling, and sizing. Manufacturing processes. Films, guest lecturers, field trips. Each student designs a custom bicycle frame that they continue from ME204A in winter quarter. Limited enrollment, admission by consent of instructors. Attendance at first lecture is required. Both ME204A and ME204B must be taken. Prerequisite: 203 or equivalent.
Terms: Spr | Units: 3

ME 205: Flexible Part Design

Project based course. Students design and fabricate tooling to create and refine elastomeric parts using RTV silicone rubber. Focus is on the development of elastomeric part design intuition through iteration. Fabrication techniques include manual/CNC machining and additive manufacturing, and molding liquid silicone. Prerequisites: ME203 or instructor consent. Recommended: ME318. Admission is by consent of the instructor. Class size limited to 10, must attend first lecture.
Terms: Aut | Units: 3
Instructors: ; Kohn, M. (PI)

ME 206A: Entrepreneurial Design for Extreme Affordability

Project course jointly offered by School of Engineering and Graduate School of Business. Students apply engineering and business skills to design product prototypes, distribution systems, and business plans for entrepreneurial ventures in developing countries for a specified challenge faced by the world's poor. Topics include user empathy, appropriate technology design, rapid prototype engineering and testing, social technology entrepreneurship, business modeling, and project management. Weekly design reviews; final course presentation. Industry and adviser interaction. Limited enrollment via application; see extreme.stanford.edu
Terms: Win | Units: 4

ME 206B: Entrepreneurial Design for Extreme Affordability

Part two of two-quarter project course jointly offered by School of Engineering and Graduate School of Business. Second quarter emphasizes prototyping and implementation of specific projects identified in first quarter. Students work in cross-disciplinary project teams. Industry and adviser interaction, weekly design reviews; final course presentation. Prerequisite: 206A.n(Jointly offered as GSB OIT333B) Design Institute class; see http://dschool.stanford.edu.
Terms: Spr | Units: 4

ME 208: Patent Law and Strategy for Innovators and Entrepreneurs (MS&E 278)

Inventors and entrepreneurs have four concerns related to patent law: protecting their inventions in the very early stages of product development, determining the patentability of their invention, avoiding infringement of a competitor's patent, and leveraging their patent as a business asset. This course will address each of these concerns through the application of law cases and business cases to an invention of the Studentâ¿¿s choice. Although listed as a ME/MSE course, the course is not specific to any discipline or technology.
Terms: Aut | Units: 2-3
Instructors: ; Schox, J. (PI)

ME 210: Introduction to Mechatronics

Technologies involved in mechatronics (intelligent electro-mechanical systems), and techniques to apply this technology to mecatronic system design. Topics include: electronics (A/D, D/A converters, op-amps, filters, power devices); software program design, event-driven programming; hardware and DC stepper motors, solenoids, and robust sensing. Large, open-ended team project. Limited enrollment. Prerequisites: ENGR 40, CS 106, or equivalents.
Terms: Win | Units: 4

ME 212: Calibrating the Instrument

For first-year graduate students in the Joint Program in Design. Means for calibrating the designer's mind/body instrument through tools including improvisation, brainstorming, creative imaging, educational kinesiology, and Brain Gym. Current design issues; guest speakers; shared stories; and goal setting.
Terms: Aut | Units: 1
Instructors: ; Edmark, J. (PI)

ME 213: Design for Exploration (ARTSTUDI 265)

A collaboration with the Exploratorium in San Francisco. Students investigate and experiment with all aspects of the creation of interactive museum exhibits. On-site exhibit floor sessions and prototyping workshops. Lectures from museum staff on exhibit design. Students design and construct exhibits for temporary placement on the floor of the Exploratorium. To be considered for admission to the course, student must fill out an application form at http://stanford.edu/~edmark/application.htm no later than Nov 30th, 2013.
Terms: Win | Units: 3-4

ME 214: Good Products, Bad Products (ME 314)

The characteristics of industrial products that cause them to be successes or failures: the straightforward (performance, economy, reliability), the complicated (human and cultural fit, compatibility with the environment, craftsmanship, positive emotional response of the user), the esoteric (elegance, sophistication, symbolism). Engineers and business people must better understand these factors to produce more successful products. Projects, papers, guest speakers, field trips.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: ; Beach, D. (PI)

ME 216A: Advanced Product Design: Needfinding

Human needs that lead to the conceptualization of future products, environments, systems, and services. Field work in public and private settings; appraisal of personal values; readings on social ethnographic issues; and needfinding for a corporate client. Emphasis is on developing the flexible thinking skills that enable the designer to navigate the future. Prerequisites for undergraduates: ME115A, ME115B and ME203, or consent of the instructor.
Terms: Aut | Units: 3-4

ME 216B: Advanced Product Design: Implementation 1

Summary project using knowledge, methodology, and skills obtained in Product Design major. Students implement an original design concept and present it to a professional jury. Prerequisite: 216A.
Terms: Win | Units: 4 | Repeatable 4 times (up to 16 units total)

ME 216C: Advanced Product Design: Implementation 2

ME216C: Implementation II is a continuation of ME216B. Students would develop project from ME216B to a further state of completion. Design will be completed, details about manufacturing, cost and production will be developed. Students will validate their projects by making them real in the world. Prerequisites for class are ME216A and ME216B.Prerequisite: 216A and 216B.
Terms: Spr | Units: 4

ME 217: Design & Construction in Wood

Explore the design and construction of objects using wood. Taught in the Product Realization Lab. Enrollment by consent of instructor.
Terms: Win, Spr | Units: 1-3
Instructors: ; Milroy, J. (PI)

ME 218A: Smart Product Design Fundamentals

Lecture/Lab. Team design project series on programmable electromechanical systems design. Topics: transistors as switches, basic digital and analog circuits, operational amplifiers, comparators, software design, state machines, programming in C. Lab fee. Limited enrollment.
Terms: Aut | Units: 4-5
Instructors: ; Carryer, J. (PI)

ME 218B: Smart Product Design Applications

Lecture/lab. Second in team design project series on programmable electromechanical systems design. Topics: user I/O, timer systems, interrupts, signal conditioning, software design for embedded systems, statecharts, sensors, actuators, noise, and power supplies. Lab fee. Limited enrollment. Prerequisite: 218A or passing the smart product design fundamentals proficiency examination.
Terms: Win | Units: 4-5
Instructors: ; Carryer, J. (PI)

ME 218C: Smart Product Design Practice

Lecture/lab. Advanced level in series on programmable electromechanical systems design. Topics: inter-processor communication, system design with multiple microprocessors, architecture and assembly language programming for the PIC microcontroller, controlling the embedded software tool chain, A/D and D/A techniques, electronic manufacturing technology. Team project. Lab fee. Limited enrollment. Prerequisite: 218B.
Terms: Spr | Units: 4-5
Instructors: ; Carryer, J. (PI)

ME 218D: Smart Product Design: Projects

Lecture/lab. Industrially sponsored project is the culmination of the Smart Product Design sequence. Student teams take on an industrial project requiring application and extension of knowledge gained in the prior three quarters, including prototyping of a final solution with hardware, software, and professional documentation and presentation. Lectures extend the students' knowledge of electronic and software design, and electronic manufacturing techniques. Topics: chip level design of microprocessor systems, real time operating systems, alternate microprocessor architectures, and PCB layout and fabrication. Prerequisite: 218C.
Terms: Aut | Units: 3-4
Instructors: ; Carryer, J. (PI)

ME 219: The Magic of Materials and Manufacturing

Intended for design-oriented students who anticipate imagining and then creating new products with a focus on materiality and brand or design and business. Assumes basic knowledge of materials and manufacturing processes which results from taking ENGR 50, ME 203, or equivalent course/life experience. Goal is to acquire professional foundation information about materials and materiality from a product design point-of-view, manufacturing processes and business systems inside a factory, and story-telling by book authorship, essay writing, and multimedia presentation. Goal is for students to exhibit a deep and life-long love of materials and manufacturing in order to make great products and tell a good story about each one.
Terms: Aut | Units: 3

ME 220: Introduction to Sensors

Sensors are widely used in scientific research and as an integral part of commercial products and automated systems. The basic principles for sensing displacement, force, pressure, acceleration, temperature, optical radiation, nuclear radiation, and other physical parameters. Performance, cost, and operating requirements of available sensors. Elementary electronic circuits which are typically used with sensors. Lecture demonstration of a representative sensor from each category elucidates operating principles and typical performance. Lab experiments with off-the-shelf devices.
Terms: Spr | Units: 3-4
Instructors: ; Kenny, T. (PI)

ME 225: Mystery of Manufacturing

Mystery of Manufacturing is intended for design- and engineering-oriented students who anticipate or have an interest in launching products. Where the cousin of this class, ME219, is an overview of fabrication and factory systems, this course will look at manufacturing systems more holistically: what does it take to get a product from your idea into peoples' hands? We'll look at factors that drive location, distribution, and supply chain decisions, and we'll look closely at the inner workings of factories. nnnThis course assumes basic knowledge of materials and manufacturing processes resulting from ENGR 50, ME 203, ME 219 or equivalent course/life experience. The goal is to acquire a professional foundation in factory manufacturing systems and the business of manufacturing through story-telling, essay writing, and multimedia presentation. We hope students will exhibit a deep and life-long love of the complexity and flexibility of manufacturing systems in order to launch great products into the world.
Terms: Spr | Units: 3
Instructors: ; Switky, A. (PI)

ME 227: Vehicle Dynamics and Control

The application of dynamics, kinematics, and control theory to the analysis and design of ground vehicle behavior. Simplified models of ride, handling, and braking, their role in developing intuition, and limitations in engineering design. Suspension design fundamentals. Performance and safety enhancement through automatic control systems. In-car laboratory assignments for model validation and kinesthetic understanding of dynamics. Limited enrollment. Prerequisites: ENGR 105, consent of instructor.
Terms: Spr | Units: 3
Instructors: ; Gerdes, J. (PI)

ME 231: Educating Young STEM Thinkers (EDUC 139X, EDUC 239X, ME 139)

The course will introduce students to the design thinking process, the national conversations about the future of STEM careers, and provide opportunities to work with middle school students and K-12 teachers in STEM-based after-school activities and intercession camps. The course will be both theory and practice focused. The purpose is twofold; to provide reflection and mentoring opportunities for students to learn about pathways to STEM careers and to introduce mentoring opportunities with young STEM thinkers.
Terms: Win, Spr | Units: 3-5 | Repeatable 4 times (up to 20 units total)

ME 236: Tales to Design Cars By

Investigating a personal relationship with cars through the application of research and with a generative storytelling focus will provide inspiration for designing a new automotive experience. This course will use ethnographic research, interviews, and a variety of narrative methods including verbal, non-verbal, cinema, and sound, and short collaborative projects to inform the creation of a physical prototype for a new car experience and the story around it. Restricted to co-term and graduate students. Restricted to co-term and graduate students. Class size limited to 18.
Terms: Spr | Units: 1-3 | Repeatable 2 times (up to 6 units total)
Instructors: ; Karanian, B. (PI)

ME 238: Patent Prosecution

The course follows the patent application process through the important stages: inventor interviews, patentability analysis, drafting claims, drafting a specification, filing a patent application, and responding to an office action. The subject matter and practical instruction relevant to each stage are addressed in the context of current rules and case law. The course includes four written assignments: an invention capture, a claim set, a full patent application, and an Office Action response. Pre-requisites: Law 326 (IP:Patents), Law 409 (Intro IP), or ME 208.
Terms: Win | Units: 2

ME 244: Mechanotransduction in Cells and Tissues (BIOE 283)

Mechanical cues play a critical role in development, normal functioning of cells and tissues, and various diseases. This course will cover what is known about cellular mechanotransduction, or the processes by which living cells sense and respond to physical cues such as physiological forces or mechanical properties of the tissue microenvironment. Experimental techniques and current areas of active investigation will be highlighted.
Terms: Aut | Units: 3
Instructors: ; Chaudhuri, O. (PI)

ME 247B: @Stanford Studio

Re-imagine the Stanford experience for the year 2020. Fall quarter the d.school's @Stanford Project will mount @Stanford Studio, an opportunity for students to design, develop, execute, and iterate immersive prototypes that allow experimentation into many facets of the future student experience. Because of the nature of prototypes and the subject matter, significant time outside of scheduled class meetings will be required. Students will work closely with design mentors, campus stakeholders, and inspiration partners (innovative educators, artists, museums, companies and/or topical experts from beyond Stanford) to create live, testable, learning experiences. Course will involve fast-paced team work and rely on strong, consistent participation and perfect attendance. Admission by application. Please see dschool.stanford.edu for application information.
Terms: Aut | Units: 4

ME 247C: @Stanford Studio

Re-imagine the future Stanford experience. @Stanford Studio is an opportunity for students to design, develop, execute, and iterate immersive prototypes that allow experimentation into many facets of the future student experience. Students enrolled in @Stanford Studio in winter quarter will be responsible for running quarter-long independent experiments. This is an advanced studio for continuing students only. Admission by application.
Terms: Win | Units: 4

ME 24N: Designing the Car of the Future

Preference to freshmen. Automotive design drawing from all areas of mechanical engineering. The state of the art in automotive design and the engineering principles to understand vehicle performance. Future technologies for vehicles. Topics include vehicle emissions and fuel consumption, possibilities of hydrogen, drive-by-wire systems, active safety and collision avoidance, and human-machine interface issues.
| Units: 3 | UG Reqs: GER:DB-EngrAppSci

ME 250: Internal Combustion Engines

Internal combustion engines including conventional and turbocharged spark ignition, and diesel engines. Lectures: basic engine cycles, engine components, methods of analysis of engine performance, pollutant emissions, and methods of engine testing. Lab involves hands-on experience with engines and test hardware. Limited enrollment. Prerequisites: 140.
Terms: Aut | Units: 1-5
Instructors: ; Edwards, C. (PI)

ME 257: Turbine and Internal Combustion Engines (ME 357)

Principles of design analysis for aircraft gas turbines and automotive piston engines. Analysis for aircraft engines performed for Airbus A380 type aircraft. Design parameters determined considering aircraft aerodynamics, gas turbine thermodynamics, compressible flow physics, and material limitations. Additional topics include characteristics of main engine components, off-design analysis, and component matching. Performance of automotive piston engines including novel engine concepts in terms of engine thermodynamics, intake and exhaust flows, and in-cylinder flow.
Terms: Spr | Units: 3
Instructors: ; Ihme, M. (PI)

ME 25N: Energy Sustainability and Climate Change

One of the primary global challenges of the 21st century is providing the energy required to meet increasing demands due to population growth and economic development. A related challenge is mitigation of the effect of this energy growth on climate. This seminar will examine various scenarios for the energy resources required to meet future demand and the potential consequences on climate. The scientific issues underlying climate change and the coupling of energy use with changes in the global atmosphere that impact climate will be discussed.
| Units: 3

ME 260: Fuel Cell Science and Technology

Emphasis on proton exchange membrane (PEM) and solid oxide fuel cells (SOFC), and principles of electrochemical energy conversion. Topics in materials science, thermodynamics, and fluid mechanics. Prerequisites: MATH 43, PHYSICS 55, and ENGR 30 or ME 140, or equivalents.
Terms: Spr | Units: 3
Instructors: ; An, J. (PI)

ME 261: Dynamic Systems, Vibrations and Control (ME 161)

(Graduate students only enroll in 261.) Modeling, analysis, and measurement of mechanical and electromechanical systems. Numerical and closed form solutions of ordinary differential equations governing the behavior of single and multiple degree of freedom systems. Stability, resonance, amplification and attenuation, and control system design. Demonstrations and laboratory experiments. Prerequisite: Calculus (differentiation and integration), ordinary differential equations (e.g., CME 102 or MATH53), basic linear algebra (determinants and solving linear equations), and familiarity with basic dynamics (F=m*a) and electronics (v=i*R). ME undergraduates must enroll for 4 units with lab. All others should enroll for 3 units without lab.
Terms: Aut | Units: 3-4
Instructors: ; Mitiguy, P. (PI)

ME 265: Technology Licencing and Commercialization

How to profit from technology; processes and strategies to commercialize functional or artistic inventions and creations (not limited to mechanical engineering). Business and legal aspects of determining what can be owned and licensed, how to determine commercial value, and what agreements are necessary. Contract and intellectual property law; focus is on provisions of license agreements and their negotiation.
Terms: Spr | Units: 3
Instructors: ; Hustein, J. (PI)

ME 266: Introduction to Physiology and Biomechanics of Hearing

Hearing is fundamental to our ability to communicate, yet in the US alone over 30 million people suffer some form of hearing impairment. As engineers and scientists, it is important for us to understand the underlying principles of the auditory system if we are to devise better ways of helping those with hearing loss. The goal of this course is to introduce undergraduate and graduate students to the anatomy, physiology, and biomechanics of hearing. Principles from acoustics, mechanics, and hydrodynamics will be used to build a foundational understanding of one of the most complex, interdisciplinary, and fascinating areas of biology. Topics include the evolution of hearing, computational modeling approaches, fluid-structure interactions, ion-channel transduction, psychoacoustics, diagnostic tools, and micrometer to millimeter scale imaging methods. We will also study current technologies for mitigating hearing loss via passive and active prostheses, as well as future regenerative therapies.
| Units: 3
Instructors: ; Puria, S. (PI)

ME 277: Graduate Design Research Techniques

Students from different backgrounds work on real-world design challenges. The Design Thinking process with emphasis on: ethnographic techniques, need finding, framing and concept generation. The Design Thinking process as a lens to explore ways to better understand people and their culture. Cultural differences as a source of design inspiration, with the understanding that design itself is a culturally embedded practice.
Terms: Win | Units: 3-4

ME 27SI: Needfinding for Underserved Populations

The heart of any design process resides in empathy with users and their needs. Working in the realm of public service may engage a population to which the designer might not have been exposed. How different needfinding techniques can help designers to understand users from underserved populations and inspire them to create products and services that serve user needs.
| Units: 2

ME 281: Biomechanics of Movement (BIOE 281)

Experimental techniques to study human and animal movement including motion capture systems, EMG, force plates, medical imaging, and animation. The mechanical properties of muscle and tendon, and quantitative analysis of musculoskeletal geometry. Projects and demonstrations emphasize applications of mechanics in sports, orthopedics, and rehabilitation.
Terms: Win | Units: 3
Instructors: ; Delp, S. (PI); Ong, C. (GP)

ME 287: Mechanics of Biological Tissues

Introduction to the mechanical behaviors of biological tissues in health and disease. Overview of experimental approaches to evaluating tissue properties and mathematical constitutive models. Elastic behaviors of hard tissues, nonlinear elastic and viscoelastic models for soft tissues.
Terms: Spr | Units: 3
Instructors: ; Levenston, M. (PI)

ME 287L: Mechanics of Biological Tissues Lab

The Mechanics of Biological Tissues Lab is the optional lab component for students taking ME287 Mechanics of Biological Tissues.
Terms: Spr | Units: 1
Instructors: ; Levenston, M. (PI)

ME 288: ReDesigning Theater: Live & Digital Performance (TAPS 130)

This quarter¿s version of ReDesigning Theater looks at Live and Digital Performance. We will examine the use of digital technology in collaboration with live performance. Students will learn and employ the design thinking process as well as improv and theatrical techniques. We aim to create user-centric, interactive experiences where technology enables the audience to become part of and/or influence the outcome of the story or its presentation. Student projects will begin with the concepts enabled by personal technology such as smart phones and expand to animation, video projection, and other media. Students will work in small groups to investigate and experiment with formats that blur the lines between live and digital, performer and audience, and physical and virtual platforms. This project-based course is accessible to students of all backgrounds interested in exploring and transforming the frontiers of technology, art, and live performance.
Terms: Aut | Units: 3

ME 289A: Interactive Art / Performance Design (TAPS 289A)

This class is for those who want the experience of designing and creating interactive art and performance pieces for public audiences, using design thinking as the method, and supported by guest speakers, artist studio visits and needfinding trips to music festivals, museums and performances.nnDrawing on the fields of design, art, performance, and engineering, each student will ideate, design, plan and lead a team to build an interactive art and/or performance piece to be showcased to audience of 5000 at the Frost Music and Art Festival held on the Stanford campus on May 17th 2014. Projects can range from interactive art to unconventional set design, and from site-specific sculpture to immersive performance.nnThis is a two-quarter long commitment during which students will first learn the design, planning, story boarding, budgeting, engineering, proposal creation and concept pitching of projects for applying for grants and presenting to funders. The second quarter will concentrate on prototyping, maquette making, testing, team forming, project management, creative leadership, construction, site installation and documentation.nPart one of a two course series: ME 289A&B.
Terms: Win | Units: 2

ME 289B: Interactive Art / Performance Creation (TAPS 289B)

This class is the continuation of ME289A where students experience the designing and creating of interactive art and performance pieces for public audiences, using design thinking as the method, and supported by guest speakers, artist studio visits and needfinding trips to music festivals, museums and performances.nnDrawing on the fields of design, art, performance, and engineering, each student will ideate, design, plan and lead a team to build an interactive art and/or performance piece to be showcased to audience of 5000 at the Frost Music and Art Festival held on the Stanford campus on May 17th 2014. Projects can range from interactive art to unconventional set design, and from site-specific sculpture to immersive performance.nnDuring this second quarter students will concentrate on prototyping, maquette making, testing, team forming, project management, creative leadership, construction, site installation and documentation.nPart two of a two course series : ME 289A&B.
Terms: Spr | Units: 3-4

ME 28SI: Professional Design Practices

Lab. Professional skills are developed through web-based portfolio and resume building. Additionally, visits to local design consulting firms and in house design groups will help solidify students understanding of the designer in the professional workplace.May be repeated for credit.
| Units: 1 | Repeatable for credit

ME 290: GIVE BIG OR GO HOME

When individuals or organizations attempt to solve social problems by giving money, they often overlook the people at the center of the situation. The bigger the problem, the more removed the donors or funding institutions become from the human experience. You will learn how to use human centered design to shape your giving, while also considering the roles of larger systems. Students will learn design thinking methods, how to conceptualize a system in which you want to make a difference, and creative ways to think about financing change.
Terms: Spr | Units: 3-4
Instructors: ; Roumani, N. (PI)

ME 294: Medical Device Design

In collaboration with the School of Medicine. Introduction to medical device design for undergraduate and graduate engineering students. ME294 is the lecture portion of the class. For involvement with design and projects, co-enroll in the lab portion, ME294L.
Terms: Aut | Units: 1

ME 294L: Medical Device Design Lab

In collaboration with the School of Medicine. This is the lab portion of ME294, which must be taken concurrently. Introduction to medical device design for undergraduate and graduate engineering students. Design, prototyping and labs. Medical device environments may include hands-on device testing; and field trips to operating rooms and local device companies. Prerequisite: 203.
Terms: Aut | Units: 3

ME 297: Forecasting for Innovators:Technology, Tools & Social Change

Technologies from the steam engine to the microprocessor have been mixed gifts, at once benefitting humankind and creating many of the problems facing humanity today. This class will explore how innovators can use forecasting methods to identify new challenges, develop responsive innovations and anticipate unintended consequences. Students will produce a long-range forecast project, applying a variety of methodologies including research, expert interviews and graphical exploration.
Terms: Win | Units: 3

ME 298: Silversmithing and Design

Skills involved in working with precious metals at a small scale. Investment casting and fabrication techniques such as reticulation, granulations, filigree, and mokume gane.
Terms: Win | Units: 3-4 | Repeatable for credit

ME 299A: Practical Training

For master's students. Educational opportunities in high technology research and development labs in industry. Students engage in internship work and integrate that work into their academic program. Following internship work, students complete a research report outlining work activity, problems investigated, key results, and follow-up projects they expect to perform. Meets the requirements for curricular practical training for students on F-1 visas. Student is responsible for arranging own internship/employment and faculty sponsorship. Register under faculty sponsor's section number. All paperwork must be completed by student and faculty sponsor, as the Student Services Office does not sponsor CPT. Students are allowed only two quarters of CPT per degree program. Course may be repeated twice.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 2 times (up to 2 units total)
Instructors: ; Adams, J. (PI); Andriacchi, T. (PI); Banerjee, B. (PI); Barnett, D. (PI); Bazant, M. (PI); Beach, D. (PI); Bowman, C. (PI); Bradshaw, P. (PI); Burnett, W. (PI); Cai, W. (PI); Camarillo, D. (PI); Cantwell, B. (PI); Cappelli, M. (PI); Carryer, J. (PI); Carter, D. (PI); Chang, F. (PI); Chaudhuri, O. (PI); Cho, K. (PI); Cutkosky, M. (PI); Darve, E. (PI); Dauskardt, R. (PI); DeBra, D. (PI); Delp, S. (PI); Durbin, P. (PI); Eaton, J. (PI); Edwards, C. (PI); Enge, P. (PI); Farhat, C. (PI); Gao, H. (PI); Gerdes, J. (PI); Goodson, K. (PI); Hanson, R. (PI); Harris, J. (PI); Homsy, G. (PI); Hughes, T. (PI); Iaccarino, G. (PI); Ihme, M. (PI); Ishii, K. (PI); Jacobs, C. (PI); Jameson, A. (PI); Johnston, J. (PI); Kasevich, M. (PI); Kelley, D. (PI); Kelly, M. (PI); Kembel, G. (PI); Kenny, T. (PI); Khatib, O. (PI); Kovacs, G. (PI); Kruger, C. (PI); Kuhl, E. (PI); Latombe, J. (PI); Leifer, L. (PI); Lele, S. (PI); Lentink, D. (PI); Levenston, M. (PI); Lew, A. (PI); Majumdar, A. (PI); Mani, A. (PI); Milroy, J. (PI); Mitchell, R. (PI); Mitiguy, P. (PI); Moin, P. (PI); Monismith, S. (PI); Mungal, M. (PI); Nelson, D. (PI); Niemeyer, G. (PI); Okamura, A. (PI); Pianetta, P. (PI); Pinsky, P. (PI); Pitsch, H. (PI); Powell, J. (PI); Prinz, F. (PI); Pruitt, B. (PI); Rock, S. (PI); Roth, B. (PI); Salisbury, J. (PI); Santiago, J. (PI); Shaqfeh, E. (PI); Sheppard, S. (PI); Sherby, O. (PI); Springer, G. (PI); Steele, C. (PI); Street, B. (PI); Tang, S. (PI); Taylor, C. (PI); Toye, G. (PI); Tsai, S. (PI); Waldron, K. (PI); Wang, H. (PI); Zajac, F. (PI); Zheng, X. (PI); Negrette, J. (GP)

ME 299B: Practical Training

For Ph.D. students. Educational opportunities in high technology research and development labs in industry. Students engage in internship work and integrate that work into their academic program. Following internship work, students complete a research report outlining work activity, problems investigated, key results, and follow-up projects they expect to perform. Meets the requirements for curricular practical training for students on F-1 visas. Student is responsible for arranging own internship/employment and faculty sponsorship. Register under faculty sponsor's section number. All paperwork must be completed by student and faculty sponsor, as the student services office does not sponsor CPT. Students are allowed only two quarters of CPT per degree program. Course may be repeated twice.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 2 times (up to 2 units total)

ME 29SI: Cars: A Crash Course

Focus is on the basic mechanics and significance of cars. Topics include a basic, real-world understanding of automobile workings, histories, industries, cultural impact, and related media. Field trips to Tesla Motors and Go-Kart Racer will be organized, and there will be guest appearances by local automotive historians and enthusiasts. Students will get hands on experience with maintaining real cars, see high performance engines run, and have the opportunity to learn how to drive a manual transmission.
| Units: 1

ME 300A: Linear Algebra with Application to Engineering Computations (CME 200)

Computer based solution of systems of algebraic equations obtained from engineering problems and eigen-system analysis, Gaussian elimination, effect of round-off error, operation counts, banded matrices arising from discretization of differential equations, ill-conditioned matrices, matrix theory, least square solution of unsolvable systems, solution of non-linear algebraic equations, eigenvalues and eigenvectors, similar matrices, unitary and Hermitian matrices, positive definiteness, Cayley-Hamilton theory and function of a matrix and iterative methods. Prerequisite: familiarity with computer programming, and MATH51.
Terms: Aut | Units: 3
Instructors: ; Gerritsen, M. (PI)

ME 300B: Partial Differential Equations in Engineering (CME 204)

Geometric interpretation of partial differential equation (PDE) characteristics; solution of first order PDEs and classification of second-order PDEs; self-similarity; separation of variables as applied to parabolic, hyperbolic, and elliptic PDEs; special functions; eigenfunction expansions; the method of characteristics. If time permits, Fourier integrals and transforms, Laplace transforms. Prerequisite: CME 200/ME 300A, equivalent, or consent of instructor.
Terms: Win | Units: 3
Instructors: ; Lele, S. (PI)

ME 300C: Introduction to Numerical Methods for Engineering (AA 214A, CME 206)

Numerical methods from a user's point of view. Lagrange interpolation, splines. Integration: trapezoid, Romberg, Gauss, adaptive quadrature; numerical solution of ordinary differential equations: explicit and implicit methods, multistep methods, Runge-Kutta and predictor-corrector methods, boundary value problems, eigenvalue problems; systems of differential equations, stiffness. Emphasis is on analysis of numerical methods for accuracy, stability, and convergence. Introduction to numerical solutions of partial differential equations; Von Neumann stability analysis; alternating direction implicit methods and nonlinear equations. Prerequisites: CME 200/ME 300A, CME 204/ME 300B.
Terms: Aut, Spr | Units: 3

ME 301: LaunchPad:Design and Launch your Product or Service

Apply principles of design thinking to the real-life challenge of imagining, prototyping, testing and iterating, building, marketing, and selling your product or service. Work will be in teams (you apply as an intact team) or alone. You must submit a proposal and team for approval. Proposal can be a physical good or service of any kind. Projects are treated as real start-ups, so the work will be intense. Proposal submitted by Feb 15, 2010 acceptance by March 1. Design Institute class; see http://dschool.stanford.edu.
Terms: Spr | Units: 4

ME 302: The Future of the Automobile

This quarter, the seminar will take a specific focus on "Advanced Driver Assistance Systems", which help drivers to maneuver their vehicles through traffic. Those systems range from navigation systems, adaptive cruise control, night vision, lane departure warning over automated parking, traffic jam assistance, to self-driving cars. With this breadth of applications, advanced driver assistance systems play an important role in making traffic safer, more efficient, and more enjoyable. This course, lectured by an industry expert, will introduce students to technology behind the systems, the benefits, challenges, and future perspectives of this exciting field. At the end of the quarter, students will have developed a technical understanding as well as an understanding for the interactions of the technology, business, and society with a specific automotive focus.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit

ME 303: Biomechanics of Flight

Study of biological flight as an inspiration for designing robots. The goal is to give students a broad understanding of the biomechanics of natural flight, and an in-depth understanding of bird flight. This course elucidates how students can pick and choose exciting biological questions, use biological and engineering techniques to answer them, and use the results to identify bio-inspired design applications. Prerequisites: Fluid mechanics OR Aerodynamics AND Fluent Matlab skills. Course website URL: http://lentinklab.stanford.edu/impact/stanford_teaching
Terms: Aut, Spr | Units: 3
Instructors: ; Lentink, D. (PI)

ME 304: The Designer's Voice

This course for Masters students in the Stanford Design Program helps students develop a point of view about their design career that will enable them to articulate their design vision, inspire a design studio, or infect a business with a culture of design-thinking. This class focuses on the integration of work and worldview, professional values, design language, and the development of the designer's voice. Includes seminar-style discussions, role-playing, short writing assignments, guest speakers, and individual mentoring and coaching.
Terms: Win | Units: 1

ME 305: Statistics for Design Researchers

Comprehensive yet friendly introduction to the fundamental concepts of inferential statistics, primarily used in survey research. Course content delivered via online video lectures, with group classroom time dedicated to completing the lab assignment. All examples and assignments involve writing code in R, interpreting R output and creating visual output with ggplot2. Two-unit credit requires completion of an analysis project using data collected as part of an NSF-funded engineering education research project. Auditors welcome.
Terms: Spr | Units: 1-2
Instructors: ; Jin, Q. (PI); Schar, M. (PI)

ME 307: Green's Function Methods in Engineering (MATSCI 307)

The concept of Green's Functions used to recast ordinary and partial dislocations as integral equations with built-in boundary conditions will be developed, including the inclusion of modified Green's Functions, where appropriate. Applications to the solutions of ODE's and elliptic, hyperbolic, and parabolic partial differential equations will be studied, including Laplace's equation, the wave and reduced wave equation, the diffusion/heat conduction equation, and the equations of motion of linear elastic theory. The course will be self-contained, so that a working knowledge of simple ODE's and the separation of variables method is the only prerequisite. Class notes will be provided.
Terms: Spr | Units: 3
Instructors: ; Barnett, D. (PI)

ME 310A: Product-Based Engineering Design, Innovation, and Development

Three quarter sequence; for engineering graduate students intending to lead projects related to sustainability, automotive, biomedical devices, communication, and user interaction. Student teams collaborate with academic partners in Europe, Asia, and Latin America on product innovation challenges presented by global corporations to design requirements and construct functional prototypes for consumer testing and technical evaluation. Design loft format such as found in Silicon Valley consultancies. Typically requires international travel. Prerequisites: undergraduate engineering design project; consent of instructor.
Terms: Aut | Units: 4

ME 310B: Product-Based Engineering Design, Innovation, and Development

Three quarter sequence; for engineering graduate students intending to lead projects related to sustainability, automotive, biomedical devices, communication, and user interaction. Student teams collaborate with academic partners in Europe, Asia, and Latin America on product innovation challenges presented by global corporations to design requirements and construct functional prototypes for consumer testing and technical evaluation. Design loft format such as found in Silicon Valley consultancies. Typically requires international travel. Prerequisites: undergraduate engineering design project; consent of instructor.
Terms: Win | Units: 4
Instructors: ; Leifer, L. (PI)

ME 310C: Project-Based Engineering Design, Innovation, and Development

Three quarter sequence; for engineering graduate students intending to lead projects related to sustainability, automotive, biomedical devices, communication, and user interaction. Student teams collaborate with academic partners in Europe, Asia, and Latin America on product innovation challenges presented by global corporations to design requirements and construct functional prototypes for consumer testing and technical evaluation. Design loft format such as found in Silicon Valley consultancies. Typically requires international travel. Prerequisites: undergraduate engineering design project; consent of instructor.
Terms: Spr | Units: 4
Instructors: ; Leifer, L. (PI)

ME 310X: New Product Management

Restricted to graduate students. Focus is on the role of the product manager in industry. Topics include product management skills, leadership and team management, getting a product management job, corporate and project finance for engineers, sales and marketing for engineers and business strategy. Seminar with in-class exercises and guest speakers from industry. Limited to 50. Prerequisite: Enrolled ME310 students only.
Terms: Aut, Win, Spr | Units: 1 | Repeatable 3 times (up to 3 units total)
Instructors: ; Schar, M. (PI)

ME 312: Advanced Product Design: Formgiving

Lecture/lab. Small- and medium- scale design projects carried to a high degree of aesthetic refinement. Emphasis is on form development, design process, and model making.
Terms: Win | Units: 3
Instructors: ; Burnett, W. (PI)

ME 313: Human Values and Innovation in Design

Introduction to the philosophy, spirit, and tradition of the product design program. Hands-on design projects used as vehicles for design thinking, visualization, and methodology. The relationships among technical, human, aesthetic, and business concerns. Drawing, prototyping, and design skills. Focus is on tenets of design philosophy: point of view, user-centered design, design methodology, and iterative design.
Terms: Aut | Units: 3
Instructors: ; Newman, D. (PI)

ME 314: Good Products, Bad Products (ME 214)

The characteristics of industrial products that cause them to be successes or failures: the straightforward (performance, economy, reliability), the complicated (human and cultural fit, compatibility with the environment, craftsmanship, positive emotional response of the user), the esoteric (elegance, sophistication, symbolism). Engineers and business people must better understand these factors to produce more successful products. Projects, papers, guest speakers, field trips.
Terms: Win | Units: 3-4
Instructors: ; Beach, D. (PI)

ME 315: The Designer in Society

For graduate students. Career objectives and psychological orientation compared with existing social values and conditions. Emphasis is on assisting individuals in assessing their roles in society. Readings on political, social, and humanistic thought are related to technology and design. Experiential, in-class exercises, and term project. Enrollment limited to 24.
Terms: Win | Units: 3
Instructors: ; Roth, B. (PI); Utley, J. (PI)

ME 316A: Product Design Master's Project

For graduate Product Design or Design (Art) majors only. Student teams, under the supervision of the design faculty, spend the quarter researching master's project topics. Students are expected to demonstrate mastery of design thinking methods including; needfinding, brainstorming, field interviews and synthesis during this investigation. Masters projects are selected that involve the synthesis of aesthetics and technological concerns in the service of human need. Design Institute class; see http://dschool.stanford.edu. Prereq: ME277, ME312, ME313
Terms: Aut | Units: 2-6

ME 316B: Product Design Master's Project

Design Garage is a Winter/Spring class (a two quarter commitment is required). The class is a deep dive in design thinking that uses student-lead projects to teach design process and methods. The projects come from investigations conducted during the Fall quarter where the preliminary need finding, customer research, and product or service ideas have been developed to provide the ¿seed¿ projects for the student design teams. Students will learn the methodologies of design thinking by bringing a product, service, or experience to market. Students apply to Design Garage in the Fall, and teams are formed after interviews and applications are reviewed. Prerequisite: graduate student standing.
Terms: Win | Units: 2-4

ME 316C: Product Design Master's Project

This is the second half of the two quarter Design Garage sequence. Students will complete projects begun in ME316B the prior quarter. Prerequisite: ME316B and graduate student standing. Design Institute class; see http://dschool.stanford.edu.
Terms: Spr | Units: 2-4 | Repeatable for credit

ME 317A: Design Methods: Product Definition

Systematic methodologies to define, develop, and produce world-class products. Student team projects to identify opportunities for improvement and develop a comprehensive product definition. Topics include value engineering, quality function deployment, FMEA and risk analysis, robustness, design for variety, design for life-cycle quality, financial analysis and Monte Carlo simulation. Students must take 317B to complete the project and obtain a letter grade. On-campus enrollment limited to 25; SCPD class size is limited to 75.
| Units: 4
Instructors: ; Beiter, K. (PI)

ME 317B: Design Methods: Quality By Design

Building on 317A, focus is on the implementation of competitive product design. Student groups apply structured methods to optimize the design of an improved product, and plan for its manufacture, testing, and service. The project deliverable is a comprehensive product and process specification. Topics: concept generation and selection (Pugh's Method), Poka Yoke, design for robustness, Monte Carlo and Design for Six Sigma, process capability analysis, financial analysis, and prototyping. On-campus class limited to 25. For SCPD students, limit is 75. Prerequisite: 317A.
| Units: 4
Instructors: ; Beiter, K. (PI)

ME 318: Computer-Aided Product Creation

Design course focusing on an integrated suite of computer tools: rapid prototyping, solid modeling, computer-aided machining, and computer numerical control manufacturing. Students choose, design, and manufacture individual products, emphasizing individual design process and computer design tools. Field trips demonstrate Stanford Product Realization Lab's relationship to the outside world. Structured lab experiences build a basic CAD/CAM/CNC proficiency. Limited enrollment. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr | Units: 4
Instructors: ; Milroy, J. (PI)

ME 319: Fundamentals of Design for Design Thinkers

This course is an introduction to the fundamental principles of Design, geared toward graduate students involved and invested in innovation and design thinking. Core concepts include Contrast, Color, Materiality, Form, Proportion, Transitions, and more. Students will be introduced to the major philosophical concepts of design in readings and in class, and will practice techniques in class and via weekly hands-on projects out of class, culminating in a final personal project. Students will also be introduced to many hands-on prototyping and making skills via access to the Product Realization Lab and Room 36 (webshop.stanford.edu)
Terms: Aut | Units: 2-4

ME 321: Optofluidics: Interplay of Light and Fluids at the Micro and Nanoscale

Many optical systems in biology have sophisticated designs with functions that conventional optics cannot achieve: no synthetic materials, for example, can provide the camouflage capability exhibited by some animals. This course overviews recent efforts--some inspired by examples in biology--in using fluids, soft materials and nanostructures to create new functions in optics. Topics include electrowetting lenses, electronic inks, colloidal photonic crystals, bioinspired optical nanostructures, nanophotonic biosensors, lens-less optofluidic microscopes. The use of optics to control fluids is also discussed: optoelectronic tweezers, particle trapping and transport, microrheology, optofluidic sorters, fabrication and self-assembly of novel micro and nanostructures.
Terms: Aut | Units: 3
Instructors: ; Tang, S. (PI)

ME 322: Kinematic Synthesis of Mechanisms

The rational design of linkages. Techniques to determine linkage proportions to fulfill design requirements using analytical, graphical, and computer based methods.
Terms: Win | Units: 3
Instructors: ; Roth, B. (PI)

ME 324: Precision Engineering

Advances in engineering are often enabled by more accurate control of manufacturing and measuring tolerances. Concepts and technology enable precision such that the ratio of overall dimensions to uncertainty of measurement is large relative to normal engineering practice. Typical application areas: non-spherical optics, computer information storage devices, and manufacturing metrology systems. Application experience through design and manufacture of a precision engineering project, emphasizing the principles of precision engineering. Structured labs; field trips. Prerequisite: consent of instructors.
Terms: Spr | Units: 4
Instructors: ; Beach, D. (PI); DeBra, D. (PI)

ME 327: Design and Control of Haptic Systems

Study of the design and control of haptic systems, which provide touch feedback to human users interacting with virtual environments and teleoperated robots. Focus is on device modeling (kinematics and dynamics), synthesis and analysis of control systems, design and implementation, and human interaction with haptic systems. Coursework includes homework/laboratory assignments and a research-oriented project. Directed toward graduate students and advanced undergraduates in engineering and computer science. Prerequisites: dynamic systems and MATLAB programming. Suggested experience with C/C++ programming and feedback control design.
Terms: Spr | Units: 3
Instructors: ; Okamura, A. (PI)

ME 331A: Advanced Dynamics & Computation

Newton, Euler, momentum, and road-map methods and computational tools for 3-D force and motion analysis of multibody systems. Power, work, and energy. Numerical solutions (e.g., MATLAB, etc.) of nonlinear algebraic and differential equations governing the static and dynamic behavior of multiple degree of freedom systems.
Terms: Win | Units: 3
Instructors: ; Mitiguy, P. (PI)

ME 331B: Advanced Dynamics, Simulation & Control

Advanced methods and computational tools for the efficient formulation of equations of motion for multibody systems. D'Alembert principle. Power, work, and energy. Kane's and Lagrange's method. Computed torque control. Systems with constraints. Quaternions. Numerical solutions (e.g., MATLAB, etc.) of nonlinear algebraic and differential equations governing the behavior of multiple degree of freedom systems. Team-based computational multi-body lab project (inclusion of feed-forward control optional).
Terms: Spr | Units: 3
Instructors: ; Mitiguy, P. (PI)

ME 333: Mechanics

Goal is a common basis for advanced mechanics courses. Introduction to variation calculus. Formulation of the governing equations from a Lagrangian perspective for finite and infinite dimensional mechanical systems. Examples include systems of particles and linear elastic solids. Introduction to tensors. Definition and interpretation of Cauchy stress tenor.
Terms: Aut | Units: 3
Instructors: ; Lew, A. (PI)

ME 335A: Finite Element Analysis

Fundamental concepts and techniques of primal finite element methods. Method of weighted residuals, Galerkin's method and variational equations. Linear eliptic boundary value problems in one, two and three space dimensions; applications in structural, solid and fluid mechanics and heat transfer. Properties of standard element families and numerically integrated elements. Implementation of the finite element method using Matlab, assembly of equations, and element routines. Lagrange multiplier and penalty methods for treatment of constraints. The mathematical theory of finite elements.
Terms: Win | Units: 3
Instructors: ; Pinsky, P. (PI)

ME 335B: Finite Element Analysis

Finite element methods for linear dynamic analysis. Eigenvalue, parabolic, and hyperbolic problems. Mathematical properties of semi-discrete (t-continuous) Galerkin approximations. Modal decomposition and direct spectral truncation techniques. Stability, consistency, convergence, and accuracy of ordinary differential equation solvers. Asymptotic stability, over-shoot, and conservation laws for discrete algorithms. Mass reduction. Applications in heat conduction, structural vibrations, and elastic wave propagation. Computer implementation of finite element methods in linear dynamics. Implicit, explicit, and implicit-explicit algorithms and code architectures.
Terms: Sum | Units: 3

ME 335C: Finite Element Analysis

Introduction to nonlinear problems; Newton¿s method; convergence, limit points and bifurcation; linearization of variational forms; finite element tangent operator and residual vector; line-search, quasi-Newton and arc-length methods; applications in hyperelasticity and contact. Introduction to time dependent problems; variational description of eigenvalue, parabolic and hyperbolic problems; semi-discrete (time-continuous) Galerkin approximations; implicit, explicit, and implicit-explicit algorithms; spectral stability, consistency, convergence, and accuracy; mass reduction; applications in heat conduction, structural vibrations and elastic wave propagation.
Terms: Sum | Units: 3
Instructors: ; Pinsky, P. (PI)

ME 337: Mechanics of Growth

Introduction to continuum theory and computational simulation of living matter. Kinematics of finite growth. Balance equations in open system thermodynamics. Constitutive equations for living systems. Custom-designed finite element solution strategies. Analytical solutions for simple model problems. Numerical solutions for clinically relevant problems such as: bone remodeling; wound healing; tumor growth; atherosclerosis; heart failure; tissue expansion; and high performance training.
Terms: Win | Units: 3
Instructors: ; Kuhl, E. (PI)

ME 338: Continuum Mechanics

Linear and nonlinear continuum mechanics for solids. Introduction to tensor algebra and tensor analysis. Kinematics of motion. Balance equations of mass, linear and angular momentum, energy, and entropy. Constitutive equations of isotropic and anisotropic hyperelasticity. Recommended as prerequisite for Finite Element Methods.
Terms: Aut | Units: 3
Instructors: ; Kuhl, E. (PI)

ME 339: Introduction to parallel computing using MPI, openMP, and CUDA (CME 213)

This class will give hands on experience with programming multicore processors, graphics processing units (GPU), and parallel computers. Focus will be on the message passing interface (MPI, parallel clusters) and the compute unified device architecture (CUDA, GPU). Topics will include: network topologies, modeling communication times, collective communication operations, parallel efficiency, MPI, dense linear algebra using MPI. Symmetric multiprocessing (SMP), pthreads, openMP. CUDA, combining MPI and CUDA, dense linear algebra using CUDA, sort, reduce and scan using CUDA. Pre-requisites include: C programming language and numerical algorithms (solution of differential equations, linear algebra, Fourier transforms).
Terms: Spr | Units: 3
Instructors: ; Darve, E. (PI)

ME 342A: MEMS Laboratory

Practice and theory of MEMS device design and fabrication, orientation to fabrication facilities, and introduction to techniques for design and evaluation of MEMS devices in the context of designed projects. Emphasis on MEMS design (need finding, brainstorming, evaluation, and design methodology), characterization, and fabrication, including photolithography, etching, oxidation, diffusion, and ion implanation. Limited enrollment. Prerequisite: engineering or science background and consent of instructor.
Last offered: Spring 2006 | Units: 3-4

ME 342D: MEMS Fabrication/Projects

Emphasis is on process planning, in process testing, nanofabrication training, exposure to MEMS industry applications. Prerequisite: ENGR 341
Terms: Sum | Units: 1-3

ME 343: An Introduction to Waves in Elastic Solids

One-dimensional motion of an elastic continuum, the linearized theory of elasticity and elastodynamic theory, elastic waves in an unbounded medium, plane harmonic waves in elastic half-spaces including reflection and refraction, slowness, energy velocity and anisotropic effects. Text is first five chapters of Achenbach's Wave Propagation in Elastic Solids. (Barnett)
Terms: Win | Units: 3
Instructors: ; Barnett, D. (PI)

ME 345: Fatigue Design and Analysis

The mechanism and occurrences of fatigue in service. Methods for predicting fatigue life and for protecting against premature fatigue failure. Use of elastic stress and inelastic strain analyses to predict crack initiation life. Use of linear elastic fracture mechanics to predict crack propagation life. Effects of stress concentrations, manufacturing processes, load sequence, irregular loading, multi-axial loading. Subject is treated from the viewpoints of the engineer seeking up-to-date methods of life prediction and the researcher interested in improving understanding of fatigue behavior. Prerequisite: undergraduate mechanics of materials.
Terms: Win | Units: 3
Instructors: ; Nelson, D. (PI)

ME 346A: Introduction to Statistical Mechanics

The main purpose of this course is to provide students with enough statistical mechanics background to the Molecular Simulations classes (ME 346B,C), including the fundamental concepts such as ensemble, entropy, and free energy, etc. The main theme of this course is how the laws at the macroscale (thermodynamics) can be obtained by analyzing the spontaneous fluctuations at the microscale (dynamics of molecules). Topics include thermodynamics, probability theory, information entropy, statistical ensembles, phase transition and phase equilibrium. Recommended: PHYSICS 110 or equivalent.
Terms: Win | Units: 3
Instructors: ; Cai, W. (PI)

ME 346B: Introduction to Molecular Simulations

Algorithms of molecular simulations and underlying theories. Molecular dynamics, time integrators, modeling thermodynamic ensembles (NPT, NVT), free energy, constraints. Monte Carlo simulations, parallel tempering. Stochastic equations, Langevin and Brownian dynamics. Applications in solids, liquids, and biomolecules (proteins). Programming in Matlab.
Terms: Spr | Units: 3
Instructors: ; Cai, W. (PI)

ME 346C: Advanced Techniques for Molecular Simulations

Advanced methods for computer simulations of solids and molecules. Methods for long-range force calculation, including Ewald methods and fast multipole method. Methods for free energy calculation, such as thermodynamic integration. Methods for predicting rates of rare events (e.g. nucleation), including nudged elastic band method and umbrella sampling method. Students will work on projects in teams.
Last offered: Summer 2012 | Units: 3

ME 348: Experimental Stress Analysis

Theory and applications of photoelasticity, strain gages, and holographic interferometry. Comparison of test results with theoretical predictions of stress and strain. Discussion of other methods of stress and strain determination (optical fiber strain sensors, acoustoelasticity, thermoelasticity, brittle coating, Moire interferometry, residual stress determination). Six labs plus mini-project. Limited enrollment. Lab fee.
Terms: Spr | Units: 3
Instructors: ; Nelson, D. (PI)

ME 350A: Design @ the Intersection of Science, Technology, and Entrepreneurship

This one-unit class is for graduate students who are passionate about turning their research into a product or service. Priority will be given to students with mature research findings from the sciences, engineering, or mathematics, students who have business acumen or start-up experience, as well as students from other fields of research. If you want to get out of your lab, away from your machine, form a team, and start to design your future come join us.nnThis one-unit class is for graduate students who are passionate about turning their research into a product or service. Priority will be given to students with mature research findings from the sciences, engineering, or mathematics, students who have business acumen or start-up experience, as well as students from other fields of research. If you want to get out of your lab, away from your machine, form a team, and start to design your future come join us.nWe¿ll meet every other week over the quarter in five self-contained workshops where students will join multiple interdisciplinary teams and explore the practical applications of fellow students¿ innovations, experience team formation and collaboration, and begin to explore product design. Advisors from industry and academia will mentor student teams. This class will prepare you to apply to a more intensive three-unit class in fall quarter where teams will push further using a human-centered approach to product discovery and continue to explore the practical applications of their research. While helpful, this class will not be a pre-requisite for the second course.nndschool.stanford.edu/classes
Terms: Spr | Units: 1
Instructors: ; Feiber, J. (PI)

ME 351A: Fluid Mechanics

Exact and approximate analysis of fluid flow covering kinematics, global and differential equations of mass, momentum, and energy conservation. Forces and stresses in fluids. Euler¿s equations and the Bernoulli theorem applied to inviscid flows. Vorticity dynamics. Topics in irrotational flow: stream function and velocity potential for exact and approximate solutions; superposition of solutions; complex potential function; circulation and lift. Some boundary layer concepts.
Terms: Aut | Units: 3
Instructors: ; Su, L. (PI)

ME 351B: Fluid Mechanics

Laminar viscous fluid flow. Governing equations, boundary conditions, and constitutive laws. Exact solutions for parallel flows. Creeping flow limit, lubrication theory, and boundary layer theory including free-shear layers and approximate methods of solution; boundary layer separation. Introduction to stability theory and transition to turbulence, and turbulent boundary layers. Prerequisite: 351A.
Terms: Win | Units: 3
Instructors: ; Mani, A. (PI)

ME 352B: Fundamentals of Heat Conduction

Physical description of heat conduction in solids, liquids, and gases. The heat diffusion equation and its solution using analytical and numerical techniques. Data and microscopic models for the thermal conductivity of solids, liquids, and gases, and for the thermal resistance at solid-solid and solid-liquid boundaries. Introduction to the kinetic theory of heat transport, focusing on applications for composite materials, semiconductor devices, micromachined sensors and actuators, and rarefied gases. Prerequisite: consent of instructor.
Terms: Win | Units: 3
Instructors: ; Goodson, K. (PI)

ME 352C: Convective Heat Transfer

Prediction of heat and mass transfer rates based on analytical and numerical solutions of the governing partial differential equations. Heat transfer in fully developed pipe and channel flow, pipe entrance flow, laminar boundary layers, and turbulent boundary layers. Superposition methods for handling non-uniform wall boundary conditions. Approximate models for turbulent flows. Comparison of exact and approximate analyses to modern experimental results. General introduction to heat transfer in complex flows. Prerequisite: 351B or equivalent.
Last offered: Spring 2013 | Units: 3

ME 354: Experimental Methods in Fluid Mechanics

Experimental methods associated with the interfacing of laboratory instruments, experimental control, sampling strategies, data analysis, and introductory image processing. Instrumentation including point-wise anemometers and particle image tracking systems. Lab. Prerequisites: previous experience with computer programming and consent of instructor. Limited enrollment.
Terms: Aut | Units: 4
Instructors: ; Santiago, J. (PI)

ME 355: Compressible Flow

Topics include quasi-one-dimensional isentropic flow in variable area ducts, normal shock waves, oblique shock and expansion waves, flow in ducts with friction and heat transfer, unsteady one-dimensional flow, and steady two-dimensional supersonic flow.
Terms: Spr | Units: 3
Instructors: ; Iaccarino, G. (PI)

ME 357: Turbine and Internal Combustion Engines (ME 257)

Principles of design analysis for aircraft gas turbines and automotive piston engines. Analysis for aircraft engines performed for Airbus A380 type aircraft. Design parameters determined considering aircraft aerodynamics, gas turbine thermodynamics, compressible flow physics, and material limitations. Additional topics include characteristics of main engine components, off-design analysis, and component matching. Performance of automotive piston engines including novel engine concepts in terms of engine thermodynamics, intake and exhaust flows, and in-cylinder flow.
Terms: Spr | Units: 3
Instructors: ; Ihme, M. (PI)

ME 358: Heat Transfer in Microdevices

Application-driven introduction to the thermal design of electronic circuits, sensors, and actuators that have dimensions comparable to or smaller than one micrometer. The impact of thin-layer boundaries on thermal conduction and radiation. Convection in microchannels and microscopic heat pipes. Thermal property measurements for microdevices. Emphasis is on Si and GaAs semiconductor devices and layers of unusual, technically-promising materials such as chemical-vapor-deposited (CVD) diamond. Final project based on student research interests. Prerequisite: consent of instructor.
Terms: Spr | Units: 3
Instructors: ; Asheghi, M. (PI)

ME 361: Turbulence

The nature of turbulent flows, statistical and spectral description of turbulence, coherent structures, spatial and temporal scales of turbulent flows. Averaging, two-point correlations and governing equations. Reynolds averaged equations and stresses. Free shear flows, turbulent jet, turbulent kinetic energy and kinetic energy dissipation, and kinetic energy budget. Kolmogorov's hypothesis and energy spectrum. Wall bounded flows, viscous scales, and law of the wall. Turbulence closure modeling for Reynolds averaged Navier Stokes equations. Direct and large eddy simulation of turbulent flows. Subgrid scale modeling.
Terms: Spr | Units: 3
Instructors: ; Mani, A. (PI)

ME 362A: Physical Gas Dynamics

Concepts and techniques for description of high-temperature and chemically reacting gases from a molecular point of view. Introductory kinetic theory, chemical thermodynamics, and statistical mechanics as applied to properties of gases and gas mixtures. Transport and thermodynamic properties, law of mass action, and equilibrium chemical composition. Maxwellian and Boltzmann distributions of velocity and molecular energy. Examples and applications from areas of current interest such as combustion and materials processing.
Terms: Aut | Units: 3
Instructors: ; Bowman, C. (PI)

ME 364: Optical Diagnostics and Spectroscopy

The spectroscopy of gases and laser-based diagnostic techniques for measurements of species concentrations, temperature, density, and other flow field properties. Topics: electronic, vibrational, and rotational transitions; spectral lineshapes and broadening mechanisms; absorption, fluorescence, Rayleigh and Raman scattering methods; collisional quenching. Prerequisite: 362A or equivalent.
Terms: Win | Units: 3
Instructors: ; Hanson, R. (PI)

ME 366: Creative Gym: A Design Thinking Skills Studio

Build your creative confidence and sharpen your design thinking skills. Train your intuition and expand the design context from which you operate every day. This experimental studio will introduce the d.school to fast-paced experimental exercises that lay the mental and physical foundation for a potent bias toward action, and a deeper knowledge of the personal skills that expert design thinkers utilize in all phases of their process. Exercises will be offered by a number of the d.school's most creatively confident design thinkers.
Terms: Spr | Units: 1

ME 367: Optical Diagnostics and Spectroscopy Laboratory

Principles, procedures, and instrumentation associated with optical measurements in gases and plasmas. Absorption, fluorescence and emission, and light-scattering methods. Measurements of temperature, species concentration, and molecular properties. Lab. Enrollment limited to 16. Prerequisite: 362A or 364.
Terms: Spr | Units: 4
Instructors: ; Hanson, R. (PI)

ME 368: d.Leadership: Design Leadership in Context (MS&E 489)

d.Leadership is a course that teaches the coaching and leadership skills needed to drive good design process in groups. d.leaders will work on real projects driving design projects within organizations, and gain real world skills as they experiment with their leadership style while coaching innovation projects. Take this course if you are inspired by past design classes and want skills to lead design projects beyond Stanford. Preference given to students who have taken other Design Group or d.school classes. Admission by application; see dschool.stanford.edu
Terms: Win | Units: 1-3

ME 368A: Biodesign Innovation: Needs Finding and Concept Creation (BIOE 374A, MED 272A)

This is the first quarter of a two-quarter course series (OIT 384/OIT 385). In this course, students learn how to develop comprehensive solutions (most commonly medical devices) to some of the most significant medical problems. The first quarter includes an introduction to needs finding methods, brainstorming and concept creation. Students learn strategies for understanding and interpreting clinical needs, researching literature and searching patents. Working in small entrepreneurial multidisciplinary teams, students gain exposure to clinical and scientific literature review, techniques of intellectual property analysis and feasibility, basic prototyping and market assessment. Students create, analyze and screen medical technology ideas, and select projects for future development. Final presentations at the end of the winter quarter to a panel of prominent inventors and investors in medical technology provide the impetus for further work in the spring quarter. Course format includes expert guest lecturers (Thu: 4:15 to 6:05 pm), faculty-led practical demonstrations and coaching sessions, and interactive team meetings (Tues: 4:15 to 6:05 pm). Projects from previous years included: prevention of hip fractures in the elderly; methods to accelerate healing after surgery; less invasive techniques for bariatric surgery; point of care diagnostics to improve emergency room efficiency; novel devices to bring specialty-type of care to primary care community doctors. More than 300,000 patients have been treated to date with technologies developed as part of this program and more than thirty venture-backed companies were started by alums of the program. Students must apply and be accepted into the course. The application is available online at http://biodesign.stanford.edu/bdn/courses/bioe374.jsp.
Terms: Win | Units: 4

ME 368B: Biodesign Innovation: Concept Development and Implementation (BIOE 374B, MED 272B)

Two-quarter sequence (see OIT384 for complete description of the sequence). The second quarter focuses on how to take a conceptual solution to a medical need forward into development and potential commercialization. Continuing work in teams with engineering and medical colleagues, students will learn the fundamentals of medical device prototyping; patent strategies; advanced planning for reimbursement and FDA approval; choosing a commercialization route (licensing vs. start-up); marketing, sales and distribution strategies; ethical issues including conflict of interest; fundraising approaches and cash requirements; financial modeling; essentials of developing a business or research plan/canvas; and strategies for assembling a development team. Final project presentations are made to a panel of prominent venture and corporate investors. New students (i.e. students who did not take OIT384 in the winter quarter) may be admitted, depending on team needs. Candidates need to submit an application at http://biodesign.stanford.edu/bdn/courses/bioe374app.jsp by March 1.
Terms: Spr | Units: 4

ME 370A: Energy Systems I: Thermodynamics

Thermodynamic analysis of energy systems emphasizing systematic methodology for and application of basic principles to generate quantitative understanding. Exergy, mixtures, reacting systems, phase equilibrium, chemical exergy, and modern computational methods for analysis. Prerequisites: undergraduate engineering thermodynamics and computer skills such as Matlab.
Terms: Aut | Units: 3
Instructors: ; Mitchell, R. (PI)

ME 370B: Energy Systems II: Modeling and Advanced Concepts

Development of quantitative device models for complex energy systems, including fuel cells, reformers, combustion engines, and electrolyzers, using thermodynamic and transport analysis. Student groups work on energy systems to develop conceptual understanding, and high-level, quantitative and refined models. Advanced topics in thermodynamics and special topics associated with devices under study. Prerequisite: 370A.
Terms: Win | Units: 4
Instructors: ; Edwards, C. (PI)

ME 370C: Energy Systems III: Projects

Refinement and calibration of energy system models generated in ME 370B carrying the models to maturity and completion. Integration of device models into a larger model of energy systems. Prerequisites: 370A,B, consent of instructor.
Terms: Spr | Units: 3-5
Instructors: ; Edwards, C. (PI)

ME 371: Combustion Fundamentals

Heat of reaction, adiabatic flame temperature, and chemical composition of products of combustion; kinetics of combustion and pollutant formation reactions; conservation equations for multi-component reacting flows; propagation of laminar premixed flames and detonations. Prerequisite: 362A or 370A, or consent of instructor.
Terms: Win | Units: 3
Instructors: ; Zheng, X. (PI)

ME 372: Combustion Applications

The role of chemical and physical processes in combustion; ignition, flammability, and quenching of combustible gas mixtures; premixed turbulent flames; laminar and turbulent diffusion flames; combustion of fuel droplets and sprays. Prerequisite: 371.
Terms: Spr | Units: 3
Instructors: ; Bowman, C. (PI)

ME 374: Dynamics and Kinetics of Nanoparticles

Part 1: Thermodynamics, transport theories and properties, aerosol dynamics and reaction kinetics of nanoparticles in fluids. Nucleation, gas kinetic theory of nanoparticles, the Smoluchowski equation, gas-surface reactions, diffusion, thermophoresis, conservation equations and useful solutions. Part 2: Introduction to soot formation, nanoparticles in reacting flows, particle transport and kinetics in flames, atmospheric heterogenous reactions, and nanocatalysis.
Terms: Win | Units: 3
Instructors: ; Wang, H. (PI)

ME 377: Design Thinking Bootcamp: Experiences in Innovation and Design

Bootcamp is a fast-paced immersive experience in design thinking. You'll progress through four full cycles of the process, working with a diverse team to solve real world challenges. Field work and deep collaboration with teammates are required of all students. Tenets of design thinking including being human-centered, prototype-driven, and mindful of process. Topics include design processes, innovation methodologies, need finding, human factors, visualization, rapid prototyping, team dynamics, storytelling, and project leadership. Limited enrollment. APPLICATION REQUIRED. See http://bit.ly/dbootcamp
Terms: Aut | Units: 3-4

ME 378: Tell, Make, Engage: Action Stories for Entrepreneuring

Individual storytelling action and reflective observations gives the course an evolving framework of evaluative methods, formed and reformed by collaborative development within the class. Stories attached to an idea or a discovery, are considered through iterative narrative work and small group research projects. This course will use qualitative and quantitative methods for story engagement, assessment, and class determined research projects with practice exercises, artifacts, short papers and presentations.
Terms: Aut, Win, Spr | Units: 1-3 | Repeatable for credit
Instructors: ; Karanian, B. (PI)

ME 379: Fail Faster

Fail Faster will explore ways to: [1] become comfortable with uncertainty, [2] develop tools to navigate situations of failure, and [3] practice turning failures into opportunities. This quick-paced workshop will examine and exercise the psychological traits and the power of resilience through hands-on activities. Students will practice techniques and tools to help them navigate, bounce back, grow and even flourish in the face of their failures.
Terms: Spr | Units: 1
Instructors: ; Hawthorne, G. (PI)

ME 380: Collaborating with the Future: Launching Large Scale Sustainable Transformations (ENVRES 380, PSYCH 380)

This project-based d.school class combines Design Thinking Processes, Behavioral Sciences, and elements of Diffusion Theory. Tools and theories introduced in class will be used to structure large-scale transformations that simultaneously create value on environmental, societal, and economic fronts. We encourage students to use this class as a launching pad for real initiatives. Primarily meant for Graduate Students. (Especially qualified/motivated Seniors will be considered). Admission to the class is through an application process which ends on March 3.nPlease find instructions and applications at https://dschool.stanford.edu/groups/largetransformations/.
Terms: Spr | Units: 3-4

ME 381: Orthopaedic Bioengineering (BIOE 381)

Engineering approaches applied to the musculoskeletal system in the context of surgical and medical care. Fundamental anatomy and physiology. Material and structural characteristics of hard and soft connective tissues and organ systems, and the role of mechanics in normal development and pathogenesis. Engineering methods used in the evaluation and planning of orthopaedic procedures, surgery, and devices.
Terms: Aut | Units: 3
Instructors: ; Levenston, M. (PI)

ME 387: Soft Tissue Mechanics

Structure/function relationships and mechanical properties of soft tissues, including nonlinear elasticity, viscoelasticity, and poroelasticity.
Last offered: Winter 2011 | Units: 3

ME 389: Biomechanical Research Symposium

Guest speakers present contemporary research on experimental and theoretical aspects of biomechanical engineering and bioengineering. May be repeated for credit.
Terms: Aut, Spr | Units: 1 | Repeatable for credit

ME 390A: High Temperature Gasdynamics Laboratory Research Project Seminar

Review of work in a particular research program and presentations of other related work.
Terms: Aut, Spr | Units: 1 | Repeatable for credit (up to 99 units total)

ME 391: Engineering Problems

Directed study for graduate engineering students on subjects of mutual interest to student and staff member. May be used to prepare for experimental research during a later quarter under 392. Faculty sponsor required.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit
Instructors: ; Adams, J. (PI); Andriacchi, T. (PI); Banerjee, B. (PI); Barnett, D. (PI); Barry, M. (PI); Bazant, M. (PI); Beach, D. (PI); Beiker, S. (PI); Beiter, K. (PI); Both, T. (PI); Bowman, C. (PI); Bradshaw, P. (PI); Britos Cavagnaro, L. (PI); Burnett, W. (PI); Cai, W. (PI); Camarillo, D. (PI); Cantwell, B. (PI); Cappelli, M. (PI); Carryer, J. (PI); Carter, D. (PI); Chang, F. (PI); Chaudhuri, O. (PI); Cuellar, M. (PI); Cutkosky, M. (PI); Darve, E. (PI); Dauskardt, R. (PI); DeBra, D. (PI); Delp, S. (PI); Doorley, S. (PI); Eaton, J. (PI); Edelman, J. (PI); Edwards, C. (PI); Evans, D. (PI); Farhat, C. (PI); Feiber, J. (PI); Gao, H. (PI); Gerdes, J. (PI); Goldman, S. (PI); Goodson, K. (PI); Gorodsky, J. (PI); Habif, S. (PI); Hanson, R. (PI); Hawthorne, G. (PI); Iaccarino, G. (PI); Ihme, M. (PI); Ishii, K. (PI); Jacobs, C. (PI); Johnston, J. (PI); Kelley, D. (PI); Kembel, G. (PI); Kenny, T. (PI); Khatib, O. (PI); Kitchen, S. (PI); Kohn, M. (PI); Kruger, C. (PI); Kuhl, E. (PI); Latombe, J. (PI); Leifer, L. (PI); Lele, S. (PI); Lentink, D. (PI); Levenston, M. (PI); Lew, A. (PI); Majumdar, A. (PI); Mani, A. (PI); Milroy, J. (PI); Mitchell, R. (PI); Mitiguy, P. (PI); Moin, P. (PI); Mungal, M. (PI); Murphy-Reinherz, N. (PI); Nelson, D. (PI); Niemeyer, G. (PI); Ohline, M. (PI); Okamura, A. (PI); Pinsky, P. (PI); Pitsch, H. (PI); Prinz, F. (PI); Pruitt, B. (PI); Puria, S. (PI); Rock, S. (PI); Roth, B. (PI); Roumani, N. (PI); Salisbury, J. (PI); Santiago, J. (PI); Sather, A. (PI); Schox, J. (PI); Shaqfeh, E. (PI); Shaughnessy, S. (PI); Sheppard, S. (PI); Springer, G. (PI); Steele, C. (PI); Steinert, M. (PI); Street, B. (PI); Sturtz, M. (PI); Tang, S. (PI); Taylor, C. (PI); Theeuwes, M. (PI); Torii, R. (PI); Toye, G. (PI); Utley, J. (PI); Waldron, K. (PI); Wang, H. (PI); Zajac, F. (PI); Zheng, X. (PI); Negrette, J. (GP)

ME 392: Experimental Investigation of Engineering Problems

Graduate engineering students undertake experimental investigation under guidance of staff member. Previous work under 391 may be required to provide background for experimental program. Faculty sponsor required.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit
Instructors: ; Adams, J. (PI); Andriacchi, T. (PI); Banerjee, B. (PI); Barnett, D. (PI); Bazant, M. (PI); Beach, D. (PI); Beiter, K. (PI); Bowman, C. (PI); Bradshaw, P. (PI); Cai, W. (PI); Camarillo, D. (PI); Cantwell, B. (PI); Cappelli, M. (PI); Carryer, J. (PI); Carter, D. (PI); Chang, F. (PI); Chaudhuri, O. (PI); Cutkosky, M. (PI); Darve, E. (PI); Dauskardt, R. (PI); DeBra, D. (PI); Delp, S. (PI); Doorley, S. (PI); Durbin, P. (PI); Eaton, J. (PI); Edelman, J. (PI); Edwards, C. (PI); Farhat, C. (PI); Gao, H. (PI); Gerdes, J. (PI); Goldman, S. (PI); Goodson, K. (PI); Gorodsky, J. (PI); Hanson, R. (PI); Iaccarino, G. (PI); Ihme, M. (PI); Ishii, K. (PI); Jacobs, C. (PI); Johnston, J. (PI); Kelley, D. (PI); Kembel, G. (PI); Kenny, T. (PI); Khatib, O. (PI); Kruger, C. (PI); Kuhl, E. (PI); Leifer, L. (PI); Lele, S. (PI); Lentink, D. (PI); Levenston, M. (PI); Lew, A. (PI); Majumdar, A. (PI); Mani, A. (PI); Milroy, J. (PI); Mitchell, R. (PI); Mitiguy, P. (PI); Moin, P. (PI); Mungal, M. (PI); Nelson, D. (PI); Niemeyer, G. (PI); Ohline, M. (PI); Okamura, A. (PI); Pinsky, P. (PI); Pitsch, H. (PI); Prinz, F. (PI); Pruitt, B. (PI); Puria, S. (PI); Rock, S. (PI); Roth, B. (PI); Salisbury, J. (PI); Santiago, J. (PI); Shaqfeh, E. (PI); Shaughnessy, S. (PI); Sheppard, S. (PI); Springer, G. (PI); Steele, C. (PI); Steinert, M. (PI); Street, B. (PI); Tang, S. (PI); Taylor, C. (PI); Theeuwes, M. (PI); Toye, G. (PI); Waldron, K. (PI); Wang, H. (PI); Zajac, F. (PI); Zheng, X. (PI); Negrette, J. (GP)

ME 395: Seminar in Solid Mechanics

Required of Ph.D. candidates in solid mechanics. Guest speakers present research topics related to mechanics theory, computational methods, and applications in science and engineering. May be repeated for credit. See http://mc.stanford.edu.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit
Instructors: ; Cai, W. (PI); Lew, A. (PI)

ME 406: Turbulence Physics and Modeling Using Numerical Simulation Data

Prerequisite: consent of instructor.
Terms: Sum | Units: 2

ME 409: Advanced Design Studies in Product Realization

Advanced Design Studies in Product Realization provides advanced engineering design graduate students with the technical and intellectual resources necessary to produce an unambiguously professional-quality project in an area of individual specialization. Emphasis is on integrated design and manufacture of a project in a diverse range of processes and materials. Students will meet bi-weekly to receive collegial support and critique from the instructor, interdisciplinary faculty mentor team, practitioners in the field, and students enrolled in the course. Prerequisites: Students will be accepted into the program on the basis of a portfolio review and a brief essay describing the proposed project. Students will be asked to name a faculty member who can provide a reference upon request. Instructor consent required.
Terms: Win | Units: 3-5 | Repeatable 2 times (up to 10 units total)
Instructors: ; Edelman, J. (PI)

ME 410A: Foresight and Innovation

Three quarter sequence. Learn how to develop technology-based visions and make them succeed. This course provides an intensive and hands-on approach to multiple foresight and strategy methods that teach you how to develop radical innovation. Students build an innovation model and prototype.Prerequisite: consent of instructor.
Terms: Aut | Units: 3-5 | Repeatable for credit
Instructors: ; Cockayne, W. (PI)

ME 410B: Foresight and Innovation

Continuation of ME410A. With model prototype in hand, students have the opportunity to further develop their innovation.
Terms: Win | Units: 1-5 | Repeatable for credit (up to 99 units total)
Instructors: ; Cockayne, W. (PI)

ME 410C: Foresight and Innovation

Continuation of ME410B. With model prototype in hand, students have the opportunity to further develop their innovation.
Terms: Spr | Units: 1-5 | Repeatable for credit (up to 99 units total)
Instructors: ; Cockayne, W. (PI)

ME 410X: Foresight Engineering Project Experience

Participate in foresight engineering research projects. Foresight engineering and technology leadership become part of the student's portfolio. May be repeated for credit. Limited enrollment. Prerequisite: consent of instructor.
Terms: Spr | Units: 3 | Repeatable for credit
Instructors: ; Cockayne, W. (PI)

ME 414: Solid State Physics for Mechanical Engineering Experiments

Introductory overview of principles of statistical mechanics, quantum mechanics and solid-state physics. Provides graduate Mechanical Engineering students with the understanding needed to work on devices or technologies which rely on solid-state physics. (Alternate years, not offered summer 2012).
Last offered: Summer 2013 | Units: 3

ME 417: Total Product Integration Engineering

For students aspiring to be product development executives and leaders in research and education. Advanced methods and tools beyond the material covered in ME 317: quality design across global supply chain, design for robustness, product development risk management, Monte Carlo simulation and product financial analysis, and decision analysis. Small teams or individuals conduct a practical project that produces a case study or enhancement to existing development methods and tools. Enrollment limited to 12. Prerequisites: 317A, B
| Units: 4 | Repeatable 3 times (up to 12 units total)
Instructors: ; Beiter, K. (PI)

ME 420: Applied Electrochemistry at Micro- and Nanoscale

The class is an introduction to applied electrochemistry with focus on micro- and nanoscale applications. Basic concepts of physical chemistry are presented, of which the fundamentals of electrochemistry are built. Theory of electrochemical methods for material analyses and material modifications are discussed with emphasis on the scaling behaviors. This year electrochemical energy generation/storage devices with focus on batteries will be discussed in class. Journals articles are reviewed within the framework of the course with focus on current problems and needs in and energy conversion and storage.
Terms: Sum | Units: 3
Instructors: ; Fasching, R. (PI)

ME 421: European Entrepreneurship and Innovation Thought Leaders Seminar

Lessons from real-world experiences and challenges in European startups, corporations, universities, non-profit research institutes and venture finance organizations. Speakers include entrepreneurs, leaders from global technology companies, university researchers, venture capitalists, legal experts, senior policy makers and other guests from selected European countries and regions. Geographic scope encompasses Ireland to Russia, and Scandinavia to the Mediterranean region. Enrollment open to undergraduates and graduates in any school or department at Stanford.
Terms: Win | Units: 1 | Repeatable for credit
Instructors: ; Lee, B. (PI); Leifer, L. (PI)

ME 423: D.HEALTH: Design Thinking for Better Health

In the U.S., 75% of medical expenditures are for illnesses that are lifestyle related such as diabetes and heart disease. If patients could change their lifestyles, medical problems could be avoided and a healthier and happier life achieved. Class employs design thinking in teams. Individual projects and small and large team projects with multiple milestones. Students work in the field, and present in class. Design Institute class; see http://dschool.stanford.edu.
Terms: Win | Units: 3

ME 451D: Microhydrodynamics (CHEMENG 310)

Transport phenomena on small-length scales appropriate to applications in microfluidics, complex fluids, and biology. The basic equations of mass, momentum, and energy, derived for incompressible fluids and simplified to the slow-flow limit. Topics: solution techniques utilizing expansions of harmonic and Green's functions; singularity solutions; flows involving rigid particles and fluid droplets; applications to suspensions; lubrication theory for flows in confined geometries; slender body theory; and capillarity and wetting. Prerequisites: 120A,B, 300, or equivalents.
Terms: Win | Units: 3
Instructors: ; Fuller, G. (PI)

ME 455: Complex Fluids and Non-Newtonian Flows (CHEMENG 462)

Definition of a complex liquid and microrheology. Division of complex fluids into suspensions, solutions, and melts. Suspensions as colloidal and non-colloidal. Extra stress and relation to the stresslet. Suspension rheology including Brownian and non-Brownian fibers. Microhydrodynamics and the Fokker-Planck equation. Linear viscoelasticity and the weak flow limit. Polymer solutions including single mode (dumbbell) and multimode models. Nonlinear viscoelasticity. Intermolecular effects in nondilute solutions and melts and the concept of reptation. Prerequisites: low Reynolds number hydrodynamics or consent of instructor.
Terms: Spr | Units: 3
Instructors: ; Shaqfeh, E. (PI)

ME 457: Fluid Flow in Microdevices

Physico-chemical hydrodynamics. Creeping flow, electric double layers, and electrochemical transport such as Nernst-Planck equation; hydrodynamics of solutions of charged and uncharged particles. Device applications include microsystems that perform capillary electrophoresis, drug dispension, and hybridization assays. Emphasis is on bioanalytical applications where electrophoresis, electro-osmosis, and diffusion are important. Prerequisite: consent of instructor.
Terms: Win, Spr | Units: 3
Instructors: ; Santiago, J. (PI)

ME 458: Advanced Topics in Electrokinetics

Electrokinetic theory and electrokinetic separation assays. Electroneutrality approximation and weak electrolyte electrophoresis theory. Capillary zone electrophoresis, field amplified sample stacking, isoelectric focusing, and isotachophoresis. Introduction to general electrohydrodynamics (EHD) theory including the leaky dielectric concept, the Ohmic model formulation, and electrokinetic flow instabilities. Prerequisite: ME 457.
Terms: Spr | Units: 3-5
Instructors: ; Santiago, J. (PI)

ME 461: Advanced Topics in Turbulence

Turbulence phenomenology; statistical description and the equations governing the mean flow; fluctuations and their energetics; turbulence closure problem, two-equation turbulence models, and second moment closures; non-local effect of pressure; rapid distortion analysis and effect of shear and compression on turbulence; effect of body forces on turbulent flows; buoyancy-generated turbulence; suppression of turbulence by stratification; turbulent flows of variable density; effect of rotation on homogeneous turbulence; turbulent flows with strong vortices. Prerequisites: 351B and 361A, or consent of instructor.
Terms: Aut | Units: 3
Instructors: ; Lele, S. (PI)

ME 463: Advanced Topics in Plasma Science and Engineering

Research areas such as plasma diagnostics, plasma transport, waves and instabilities, and engineering applications.
Terms: Spr | Units: 3
Instructors: ; Cappelli, M. (PI)

ME 468: Experimental Research in Advanced User Interfaces (COMM 168, COMM 268, COMM 368)

Project-based course involves small (3-4) person teams going through all parts of the experimental process: question generation, experiment design, running, and data analysis. Each team creates an original, publishable project that represents a contribution to the research and practicum literatures. All experiments involve interaction between people and technology, including cars, mobile phones, websites, etc. Prerequisite: consent of instructor.
Terms: Aut | Units: 1-5 | Repeatable for credit
Instructors: ; Bailenson, J. (PI)

ME 469: Computational Methods in Fluid Mechanics

The last two decades have seen the widespread use of Computational Fluid Dynamics (CFD) for analysis and design of thermal-fluids systems in a wide variety of engineering fields. Numerical methods used in CFD have reached a high degree of sophistication and accuracy. The objective of this course is to introduce ¿classical¿ approaches and algorithms used for the numerical simulations of incompressible flows. In addition, some of the more recent developments are described, in particular as they pertain to unstructured meshes and parallel computers. An in-depth analysis of the procedures required to certify numerical codes and results will conclude the course.
Terms: Win | Units: 3
Instructors: ; Iaccarino, G. (PI)

ME 469B: Computational Methods in Fluid Mechanics

Advanced CFD codes. Geometry modeling, CAD-CFD conversion. Structured and unstructured mesh generation. Solution methods for steady and unsteady incompressible Navier-Stokes equations. Turbulence modeling. Conjugate (solid/fluid) heat transfer problems. Development of customized physical models. Batch execution for parametric studies. Final project involving solution of a problem of student¿s choosing. Prerequisite: ME 300C/CME 206.
Last offered: Spring 2007 | Units: 3

ME 471: Turbulent Combustion

Basis of turbulent combustion models. Assumption of scale separation between turbulence and combustion, resulting in Reynolds number independence of combustion models. Level-set approach for premixed combustion. Different regimes of premixed turbulent combustion with either kinematic or diffusive flow/chemistry interaction leading to different scaling laws and unified expression for turbulent velocity in both regimes. Models for non-premixed turbulent combustion based on mixture fraction concept. Analytical predictions for flame length of turbulent jets and NOx formation. Partially premixed combustion. Analytical scaling for lift-off heights of lifted diffusion.
Terms: Aut | Units: 3
Instructors: ; Ihme, M. (PI)

ME 485: Modeling and Simulation of Human Movement (BIOE 485)

Direct experience with the computational tools used to create simulations of human movement. Lecture/labs on animation of movement; kinematic models of joints; forward dynamic simulation; computational models of muscles, tendons, and ligaments; creation of models from medical images; control of dynamic simulations; collision detection and contact models. Prerequisite: 281, 331A,B, or equivalent.
Terms: Spr | Units: 3
Instructors: ; Delp, S. (PI)

ME 492: Mechanical Engineering Teaching Assistance Training

Terms: Aut, Win, Spr | Units: 1

ME 495A: ME Seminar Series: Product Design

Seminars will feature accomplished product designers and product design researchers. Guest speakers will come from the U.S. and internationally, and will present on topics of current interest to the Product Design Community.
Terms: Win | Units: 1

ME 185: Electric Vehicle Design

This project based class focuses on the design and prototyping of electric vehicles. Students learn the fundamentals of vehicle design in class and apply the knowledge as they form teams and work on projects involving concept, specifications, structure, systems, integration, assembly, testing, etc. The class meets once a week to learn about the fundamentals, exchange their experiences, and coordinate between projects. The teams of 3-5 will work on their projects independently.
| Units: 3

ME 190: Ethical Issues in Mechanical Engineering

Moral rights and responsibilities of engineers in relation to society, employers, colleagues, and clients; cost-benefit-risk analysis, safety, and informed consent; whistle blowing; engineers as expert witnesses, consultants, and managers; ethical issues in engineering design, manufacturing, and operations, and engineering work in foreign countries; and ethical implications of the social and environmental contexts of contemporary engineering. Case studies and field research. Enrollment limited to 25 Mechanical Engineering majors.
| Units: 4

ME 196: Design and Manufacturing Forum (ME 396)

Invited speakers address issues of interest to design and manufacturing engineering and business students. Sponsored by the Product Realization Laboratory at Stanford.
| Units: 1 | Repeatable for credit

ME 203X: Prototyping and Process Capture

Concepts and methods for low resolution prototyping as an integral activity in engineering design process. Class meetings include presentations by faculty and design oriented exercises by students. Assignments will be Blog Posts. ME203X is designed to work in phase with ME203 and offers greater depth in protoyping strategy, technique, and resultant insights. Concurrent enrollment in ME203 is required. Enrollment is optional and capped at 6 students.
| Units: 1

ME 211: ReMake: Design Lessons from Restoration

Focus is on the restoration of the 1962 Cadillac DeVille project car as a design investigation. Topics include: What makes a car a classic? How does this car express luxury, and how is that different from contemporary luxury products? What does the car say about the American identity, and how has that changed over the past half-century? Every student can expect to get their hands dirty; prior automotive experience is not required. Goal is to have the car operational again by the end of Autumn Quarter. Preference to early graduate and advanced undergraduate students. Enrollment limited to 15.
| Units: 1 | Repeatable for credit

ME 221: Green Design Strategies and Metrics

Foundation in sustainable product design principles, reinforced by conceptual design projects. Discuss what aspects of sustainability matter most for different products. Application of dozens of strategies to improve product sustainability. Frameworks, measurements, and decision-making tools to navigate the complexities of designing greener products. Life-cycle analysis, materials, energy use, biomimicry, product-service systems, persuasive design, design for end-of-life, and systems thinking.
| Units: 2

ME 222: Design for Sustainability

Lecture/lab. Role of design in building a sustainable world. How to include sustainability in the design process considering environmental, cultural, and social impacts. Focus is on a proactive design approach, and the tools and techniques needed to translate theory into artifact.
| Units: 2-3 | Repeatable for credit

ME 223: Innovating Water Solutions for Developing Countries

Primarily for graduate students and seniors with strong design and mechanical engineering backgrounds. Currently 1.1 billion people lack safe drinking water and 2.6 billion people lack adequate sanitation. The FAO states that by 2025 1.9 billion people will be living in countries or regions with absolute water scarcity, and two-thirds of the world population could be under stress conditions. The Stanford ChangeLabs has initiated a project called the 100 Liter Water project, designed to form strategies to deliver a minimum of 100 liters of water per day per family to the poorest communities in the world. This is a self-directed project class restricted to 15 students selected through an application process. Students work individually and in teams on water related technologies such as solar based low flow pumping systems, rainwater catchment systems, and storage systems. The studio class entails working on the design of solar powered low flow pumps, rainwater catchment systems, and very low cost storage systems designed for sparsely distributed communities in water stressed regions of the world. Students expected to work with autonomy and self-direction, going through multiple rounds of prototyping to generate breakthrough technologies designed to make deep impact.
| Units: 2-3 | Repeatable for credit

ME 226: Designing Sustainable Behavior

How do you design a product so people will use it in the most sustainable way? Through practical design exercises you experience how selected design tools can help you affect the behavior of your target group. The course consists of an 8-hour workshop on Saturday April 6th in Studio2 at the d.school, followed by a group project finishing April 24th. Students may request to only audit the workshop by emailing jdaae@stanford.edu. The course builds upon and contributes to an ongoing research project. Prerequisite: training in product design.
| Units: 1

ME 229: Design Evangelism

Students work with Ambidextrous staff and magazine professionals to edit and produce Ambidextrous, Stanford University's Journal of Design. Topics include design processes and innovation, storytelling, writing and editing for an audience, magazine production and project leadership. Hands-on projects, in-class exercises, and guest lectures.
| Units: 1-2

ME 233: Making it Big: Crossing the Entrepreneur's Gap

Students learn to take novel designs into entrepreneurial production and prepare for market production. Education, resources, and community are provided to help students cross the gap, founding ideas and making them real, in volume. Topics include entrepreneurial production methods and initiation, vendor selection and engagement, cost, design transfer, quality and testing, manufacturing planning and execution. Course prepares students for leadership roles in entrepreneurial as well as large production-oriented companies. Case studies, regular project reviews, final presentation, industry interaction.
| Units: 3
Instructors: ; Theeuwes, M. (PI)

ME 235: Understanding Superfans and their Heroes

Harness the power of the hero coefficient through a radical team-based, hands-on, multidisciplinary class. Students will learn and utilize the principles of Empathy-Define-Ideate-Prototype-Test components of the d.thinking process. Why do superfans love their heroes? You'll get to prototype and explore how superfans connect with their heroes, understanding this connective tissue works will give your own ideas a boost. We'll be studying heroes the likes of Dale Earnhardt, Michael Jordan and Stephen Colbert. Expect to leave this class ready to spread the word about heroes and superfans and make everyone at your company or on your team feel like one. You will hear from special guests and take a field trip to a racetrack. Sponsored by the Revs Program. Limited enrollment. FAQ and apply here: http://revs.stanford.edu/course/693
| Units: 2-3

ME 239: Mechanics of the Cell

Kinematical description of basic structural elements used to model parts of the cell: rods, ropes, membranes, and shells. Formulation of constitutive equations: nonlinear elasticity and entropic contributions. Elasticity of polymeric networks. Applications to model basic filaments of the cytoskeleton: actin, microtubules, intermediate filaments, and complete networks. Applications to biological membranes.
| Units: 3

ME 240: Introduction to Nanotechnology

Nanotechnology as multidisciplinary with contributions from physical sciences, engineering, and industry. Current topics in nanotechnology research; developments in nanomaterials, mechanics, electronics, and sensors; and applications. Nanoscale materials building blocks, fabrication and assembly processes, characterization and properties, and novel system architectures. Implications for future development.
| Units: 3

ME 243: Designing Emotion-Reactive Car Interfaces

How to design in car interfaces that take into account the emotional state of the driver in the moment of driving? Participants will be prototyping and testing interfaces for an industry partner. The challenge is to take real time physiological data to infer the emotional state of a driver and to lever these to improve the driving experience. We will cover topics on design methodology, psychology of emotions, and human machine interaction. The class meets at VAIL, the Stanford automotive innovation facility, for prototyping, discussions and presentations. Participants will have access to tools, prototyping materials, physiological sensors, and a car. Students from all ENG majors but also beyond are encouraged to join, bring your drivers license.
| Units: 3

ME 247A: @Stanford Studio

The d.school is working with the University to re-invent the on-campus experience. Huge shifts are disrupting education in unprecedented ways, questioning what it means to learn and live on campus. It's time to harness those changes and re-invent what it means to be a student right here at Stanford. You will delve into design, dig into the most adventurous educational experiments happening around the country, immerse yourself in mind-blowing experiences both on- and off-campus, and create short films and wild prototypes that demonstrate the future of campus life. Your work may be seen or experienced by faculty, deans, and the Stanford community at-large; the opportunity for impact is very real.
| Units: 4

ME 264: d.science: Design for Science

Where does design fit into scientific research? In this class, we will design for how data are collected, how data are communicated, and how to apply scientific insights to community-based projects. This year's projects are inspired by the Citizen Science movement and The Year of the Bay. We will use human-centered design methods to understand the needs of bay area citizens through hands-on data collection, public data exploration and collaboration with local industry, government and research partners.nWith guest lectures from the design and science community, research mentors, and skills workshops, you will develop an actionable understanding of the challenges of collecting good data, the complexities of creating engaging stories with quantitative data, and the challenges of balancing insights from both human-centered design research and scientific research. One of the three class projects will involve visualizing and mapping big data. No prior programming or statistics experience required.nEnrollment limited to 24. This course is open to graduate students from all schools and departments. Apply the first day of class.
| Units: 3-4 | Repeatable 2 times (up to 8 units total)

ME 280: Skeletal Development and Evolution (BIOE 280)

The mechanobiology of skeletal growth, adaptation, regeneration, and aging is considered from developmental and evolutionary perspectives. Emphasis is on the interactions between mechanical and chemical factors in the regulation of connective tissue biology. Prerequisites: BIO 42, and ME 80 or BIOE 42.
| Units: 3

ME 283: Introduction to Biomechanics

Introduction to the application of mechanical engineering analysis to understand human physiology and disease. Topics include basics of musculoskeletal force analysis, cell mechanics, blood flow, and mechanical behaviors of tissues. Undergraduates should have taken ME 70 and ME 80 or equivalents.
| Units: 3

ME 284B: Cardiovascular Bioengineering (BIOE 284B)

Continuation of ME/BIOE 284A. Integrative cardiovascular physiology, blood fluid mechanics, and transport in the microcirculation. Sensing, feedback, and control of the circulation. Overview of congenital and adult cardiovascular disease, diagnostic methods, and treatment strategies. Engineering principles to evaluate the performance of cardiovascular devices and the efficacy of treatment strategies.
| Units: 3

ME 308: Spatial Motion

The geometry of motion in Euclidean space. Fundamentals of theory of screws with applications to robotic mechanisms, constraint analysis, and vehicle dynamics. Methods for representing the positions of spatial systems of rigid bodies with their inter-relationships; the formulation of Newton-Euler kinetics applied to serial chain systems such as industrial robotics.
| Units: 3

ME 309: Finite Element Analysis in Mechanical Design

Basic concepts of finite elements, with applications to problems confronted by mechanical designers. Linear static, modal, and thermal formulations emphasized; nonlinear and dynamic formulations introduced. Application of a commercial finite element code in analyzing design problems. Issues: solution methods, modeling techniques, features of various commercial codes, basic problem definition. Individual projects focus on the interplay of analysis and testing in product design/development. Prerequisites: Math 51, or equivalent. Recommended: ME80 or CEE101A, or equivalent in structural and/or solid mechanics; some exposure to principles of heat transfer.
| Units: 3

ME 320: Introduction to Robotics (CS 223A)

Robotics foundations in modeling, design, planning, and control. Class covers relevant results from geometry, kinematics, statics, dynamics, motion planning, and control, providing the basic methodologies and tools in robotics research and applications. Concepts and models are illustrated through physical robot platforms, interactive robot simulations, and video segments relevant to historical research developments or to emerging application areas in the field. Recommended: matrix algebra.
| Units: 3
Instructors: ; Kroeger, T. (PI)

ME 323: Modeling and Identification of Mechanical Systems for Control

Lecture/Lab. The art and science behind developing mathematical models for control system design. Theoretical and practical system modeling and parameter identification. Frequency domain identification, parametric modeling, and black-box identification. Analytical work and laboratory experience with identification, controller implementation, and the implications of unmodeled dynamics and non-linearities. Prerequisites: linear algebra and system simulation with MATLAB/SIMULINK; ENGR 105.
| Units: 3

ME 326: Telerobotics and Human-Robot Interactions

Focus is on dynamics and controls. Evaluation and implementation of required control systems. Topics include master-slave systems, kinematic and dynamic similarity; control architecture, force feedback, haptics, sensory substitutions; stability, passivity, sensor resolution, servo rates; time delays, prediction, wave variables. Hardware-based projects encouraged, which may complement ongoing research or inspire new developments. Limited enrollment. Prerequisites: ENGR 205, 320 or CS 223A, or consent of instructor. (Niemeyer)
| Units: 3

ME 328: Medical Robotics

Study of the design and control of robots for medical applications. Focus is on robotics in surgery and interventional radiology, with introduction to other healthcare robots. Delivery is through instructor lectures and weekly guest speakers. Coursework includes homework and laboratory assignments, an exam, and a research-oriented project. Directed toward graduate students and advanced undergraduates in engineering and computer science; no medical background required. Prerequisites: dynamic systems and MATLAB programming. Suggested experience with C/C++ programming, feedback control design, and linear systems. Cannot be taken concurrently with CS 571.
| Units: 3

ME 330: Advanced Kinematics

Kinematics from mathematical viewpoints. Introduction to algebraic geometry of point, line, and plane elements. Emphasis is on basic theories which have potential application to mechanical linkages, computational geometry, and robotics.
| Units: 3

ME 338B: Continuum Mechanics

Constitutive theory; equilibrium constitutive relations; material frame indifference and material symmetry; finite elasticity; formulation of the boundary value problem; linearization and well-posedness; symmetries and configurational forces; numerical considerations.
| Units: 3

ME 340: Theory and Applications of Elasticity

This course provides an introduction to the elasticity theory and its application to material structures at microscale. The basic theory includes the definition of stress, strain and elastic energy; equilibrium and compatibility conditions; and the formulation of boundary value problems. We will mainly discuss the stress function method to solve 2D problems and will briefly discuss the Green's function approach for 3D problems. The theory and solution methods are then applied to contact problems as well as microscopic defects in solids, such as voids, inclusions, cracks, and dislocations. Computer programming in Matlab is used to aid analytic derivation and numerical solutions of elasticity problems.
| Units: 3

ME 342: Theory and Application of Inelasticity

Theories of plasticity and fracture phenomena from both phenomenological and micromechanical viewpoints. Yield surface, flow rules, strain hardening models, and applications to creep. Plastic zone near crack tip. Linear fracture mechanics and other criteria for crack initiation and growth. Application to fatigue. Classical analytic solutions will be discussed together with numerical solutions of plane elastoplatic problems by Matlab.
| Units: 3

ME 347: Mathematical Theory of Dislocations

The mathematical theory of straight and curvilinear dislocations in linear elastic solids. Stress fields, energies, and Peach-Koehler forces associated with these line imperfections. Anisotropic effects, Green's function methods, and the geometrical techniques of Brown and Indenborn-Orlov for computing dislocation fields and for studying dislocation interactions. Continuously distributed dislocations and cracks and inclusions.
| Units: 3

ME 349: Variational Methods in Elasticity and Plate Theory

An introduction to variational calculus methods and their applications to the theories of elasticity and plates.
| Units: 3

ME 352A: Radiative Heat Transfer

The fundamentals of thermal radiation heat transfer; blackbody radiation laws; radiative properties of non-black surfaces; analysis of radiative exchange between surfaces and in enclosures; combined radiation, conduction, and convection; radiative transfer in absorbing, emitting, and scattering media. Advanced material for students with interests in heat transfer, as applied in high-temperature energy conversion systems. Take 352B,C for depth in heat transfer. Prerequisites: graduate standing and undergraduate course in heat transfer. Recommended: computer skills.
| Units: 3

ME 359A: Advanced Design and Engineering of Space Systems I

The application of advanced theory and concepts to the development of spacecraft and missile subsystems; taught by experts in their fields. Practical aspects of design and integration. Mission analysis, systems design and verification, radiation and space environments, orbital mechanics, space propulsion, electrical power and avionics subsystems, payload communications, and attitude control. Subsystem-oriented design problems focused around a mission to be completed in groups. Tours of Lockheed Martin facilities. Limited enrollment. Prerequisites: undergraduate degree in related engineering field or consent of instructor.
| Units: 4

ME 359B: Advanced Design and Engineering of Space Systems II

Continuation of 359A. Topics include aerospace materials, mechanical environments, structural analysis and design, finite element analysis, mechanisms, thermal control, probability and statistics. Tours of Lockheed Martin facilities. Limited enrollment. Prerequisites: undergraduate degree in related field, or consent of instructor.
| Units: 4

ME 362B: Nonequilibrium Processes in High-Temperature Gases

Chemical kinetics and energy transfer in high-temperature gases. Collision theory, transition state theory, and unimolecular reaction theory. Prerequisie: 362A or consent of instructor.
| Units: 3

ME 363: Partially Ionized Plasmas and Gas Discharges

Introduction to partially ionized gases and the nature of gas discharges. Topics: the fundamentals of plasma physics emphasizing collisional and radiative processes, electron and ion transport, ohmic dissipation, oscillations and waves, interaction of electromagnetic waves with plasmas. Applications: plasma diagnostics, plasma propulsion and materials processing. Prerequisite: 362A or consent of instructor.
| Units: 3

ME 369: Cracks, Dislocations, and Waves

The 6-dimensional formalism of A. N. Stroh will be developed to treat two-dimensional problems in elastically anisotropic media. Stress fields of straight dislocations will be developed, from which the elastic fields of line cracks (treated as continuous distributions of straight dislocations) will be obtained along with stress intensity factors and energy release rates. Steady waves including plane waves, Rayleigh waves, and Stoneley waves will be treated along with problems of reflection and refraction of incident plane waves in joined anisotropic half-spaces. Anisotropic boundary element methods will be discussed. Assignments will include both analytical and semi-analytical work as well as simple numerical methods to implement Stroh's formalism. Class notes and readings will be provided.
| Units: 3

ME 375A: StoryViz: Storytelling and Visual Communication

StoryViz is about creating authentic & compelling communication in many media: this year's topics include sketching, video, visual design & performance. Fantastic guests and a bevy of assignments will prepare students to communicate their work and ideas genuinely, concisely, and with a keen sense of wit. Limited enrollment; application required; see http://dschool.stanford.edu/classes. Please see notes.
| Units: 2-3

ME 375B: Institute of Design Project 2

Hands-on, project-based series for d.school students emphasizing innovation and design thinking. Resolving constraints among technical, business, and human concerns to create solutions that benefit society. Real-world design projects in areas suck as K-12 education, social entrepreneurship, business prototyping, sustainability, and health and wellness. Design reviews and final course presentations. Industry and adviser interaction. Limited enrollment; application required; see http://dschool.stanford.edu/classes.
| Units: 1-6

ME 375C: Institute of Design Project 3

Hands-on, project-based series for d.school students emphasizing innovation and design thinking. Resolving constraints among technical, business, and human concerns to create solutions that benefit society. Real-world design projects in areas suck as K-12 education, social entrepreneurship, business prototyping, sustainability, and health and wellness. Design reviews and final course presentations. Industry and adviser interaction. Limited enrollment; application required; see http://dschool.stanford.edu/classes.
| Units: 1-6

ME 376A: Imagining the Future of Learning: SparkTruck - Designing Mobile Interventions for Education (EDUC 333B)

Created at the d.school last year, SparkTruck has traveled over 15,000 miles across the USA, teaching thousands of kids how to build stuff and unleash their creativity. In this class, students will explore the potential of a mobile platform for affecting change in the educational ecosystem. Topics will include introductions to the design process, modern prototyping tools, and the complex education ecosystem. Students will work in teams in this project-based class, and an emphasis will be placed on real-world prototyping through hands-on field work in local schools. Interested and qualified students will have the opportunity to embark on a cross-country road trip in the SparkTruck this summer. Open to all graduate students and well-qualified undergrads of any major. Enrollment is limited. Apply at www.sparktruck.org/apply
| Units: 4 | Repeatable 2 times (up to 8 units total)

ME 376C: Institute of Design Project 2

Hands-on, project-based series for d.school students. Design thinking, design processes, innovation methodologies, need finding, human factors, rapid prototyping, team dynamics, negotiation, and project management. Focus is on resolving constraints among technical, business, and human concerns to create solutions that benefit society. Real-world design projects. Weekly design reviews, final course presentations. Industry and adviser interaction. Limited enrollment; application required; see http://dschool.stanford.edu/classes.
| Units: 1-6

ME 382: Biomedical Engineering in Research and Development

This project based course will cover the application of engineering methods to real world biomedical problems ranging from translational biomedical research to medical device design. Topics will include the emerging importance of preventative strategies, and the biomedical challenges of an aging population. A key element of the course will be the identification of the underlying scientific principles (computational and/or experimental) for solving biomedical problems. The students will gain experience in the formation of project teams; interdisciplinary communication skills; forming testable hypothesis with biological, anatomical, and physiological considerations; testing standards for medical devices; regulatory issues; and intellectual property.
| Units: 4

ME 382A: Biomedical Engineering in Research and Development

This project based course will cover the application of engineering methods to real world biomedical problems ranging from translational biomedical research to medical device design. Topics will include the emerging importance of preventative strategies, and the biomedical challenges of an aging population. A key element of the course will be the identification of the underlying scientific principles (computational and/or experimental) for solving biomedical problems. The students will gain experience in the formation of project teams; interdisciplinary communication skills; forming testable hypothesis with biological, anatomical, and physiological considerations; testing standards for medical devices; regulatory issues; and intellectual property.
| Units: 4

ME 382B: Medical Device Design

Continuation of the projects from 382A. With the assistance of faculty and expert consultants, students finalize research projects or device designs. Strategies for funding biomedical research and new medical ventures will also be covered.
| Units: 4

ME 385: Tissue Engineering Lab

Hands-on experience in the fabrication of living engineered tissues. Techniques include sterile technique, culture of mammalian cells, creation of cell-seeded scaffolds, and the effects of mechanical loading on the metabolism of living engineered tissues. Theory, background, and practical demonstration for each technique. Lab.
| Units: 1-2

ME 386: Neuromuscular Biomechanics (BIOE 386)

The interplay between mechanics and neural control of movement. State of the art assessment through a review of classic and recent journal articles. Emphasis is on the application of dynamics and control to the design of assistive technology for persons with movement disorders.
| Units: 3

ME 388: Transport Modeling for Biological Systems

Introduction to electric fields, fluid flows, transport phenomena and their application to biological systems. Maxwell's equations, electrostatics, electro-chemical-mechanical driving forces in physiological systems. Ionic diffusion in electrolytes and membrane transport. Fluid and solid continua theory for porous, hydrated biological tissues. Applications include ionic and molecular transport in tissues and cells, electrophoresis, electromechanical and physicochemical interactions in cells and the extracellular matrix of connective tissue.
| Units: 3

ME 390: Thermosciences Research Project Seminar

Review of work in a particular research program and presentations of other related work.
| Units: 1 | Repeatable for credit

ME 393: Topics in Biologically Inspired or Human Interactive Robotics

Application of observations from human and animal physiology to robotic systems. Force control of motion including manipulation, haptics, and locomotion. Weekly literature review forum led by student. May be repeated for credit. (Cutkosky, Waldron, Niemeyer)
| Units: 1 | Repeatable for credit

ME 396: Design and Manufacturing Forum (ME 196)

Invited speakers address issues of interest to design and manufacturing engineering and business students. Sponsored by the Product Realization Laboratory at Stanford.
| Units: 1 | Repeatable for credit

ME 397: Design Theory and Methodology Seminar

What do designers do when they do design? How can their performance be improved? Topics change each quarter. May be repeated for credit.
| Units: 1-3 | Repeatable for credit

ME 399: Fuel Cell Seminar

Interdisciplinary research in engineering, chemistry, and physics. Talks on fundamentals of fuel cells by speakers from Stanford, other academic and research institutions, and industry. The potential to provide high efficiency and zero emissions energy conversion for transportation and electrical power generation.
| Units: 1

ME 405: Asymptotic Methods in Computational Engineering

This course is not a standard teaching of asymptotic methods as thought in the applied math programs. Nor does it involve such elaborate algebra and analytical derivations. Instead, the class relies on students¿ numerical programing skills and introduces improvements on numerical methods using standard asymptotic and scaling ideas. The main objective of the course is to bring physical insight into numerical programming. Majority of the problems to be explored involve one-¬ and two-dimensional transient partial differential equations. Topics include: 1¿Review of numerical discretization and numerical stability, 2-Implicit versus explicit methods, 3-Introduction to regular and singular perturbation problems, 4¬¿Method of matched asymptotic expansions, 5¬¿Stationary thin interfaces: boundary layers, Debye layers,¿ 6¿Moving thin interfaces: shocks, phase-¬¿interfaces, 7-Reaction-¬diffusion problems, 8-Directional equilibrium and lubrication theory.
| Units: 3

ME 408: Spectral Methods in Computational Physics (CME 322)

Data analysis, spectra and correlations, sampling theorem, nonperiodic data, and windowing; spectral methods for numerical solution of partial differential equations; accuracy and computational cost; fast Fourier transform, Galerkin, collocation, and Tau methods; spectral and pseudospectral methods based on Fourier series and eigenfunctions of singular Sturm-Liouville problems; Chebyshev, Legendre, and Laguerre representations; convergence of eigenfunction expansions; discontinuities and Gibbs phenomenon; aliasing errors and control; efficient implementation of spectral methods; spectral methods for complicated domains; time differencing and numerical stability.
| Units: 3

ME 411: Advanced Topics in Computational Solid Mechanics

Discussion of the use of computational simulation methods for analyzing and optimizing production processes and for developing new products, based on real industrial applications in the metal forming industry. Brief review of linear and nonlinear continuum mechanics and the use of finite element methods to model solid mechanics problems, constitutive relations for metals, coupled thermo-elasto-plastic (viscoplastic) problems, modeling metal productions processes: bulk metal forming processes using rigid/viscoplastic material models, application examples: hot rolling of plates and the Mannesmann piercing processes and modeling the service behavior of steel pipes. Prerequisites: ME 338A, ME 335A,B,C, or consent of instructor.
| Units: 3

ME 412: Engineering Functional Analysis and Finite Elements (CME 356)

Concepts in functional analysis to understand models and methods used in simulation and design. Topology, measure, and integration theory to introduce Sobolev spaces. Convergence analysis of finite elements for the generalized Poisson problem. Extensions to convection-diffusion-reaction equations and elasticity. Upwinding. Mixed methods and LBB conditions. Analysis of nonlinear and evolution problems. Prerequisites: 335A,B, CME 200, CME 204, or consent of instructor. Recommended: 333, MATH 171.
| Units: 3

ME 413: Quantum Confinement Structures: Physics and Fabrication

Quantum mechanics principles and the thermodynamics of confinement structures. Focus is on potential applications such as solar cells and catalysis. Student presentations. Lab demonstrations. Prerequisite: background in quantum mechanics and statistical thermodynamics.
| Units: 3

ME 429: COMMERCIAL MEMS DESIGN

This course, taught by Dr. Gary O'Brien of the Bosch RTC, will provide insight into the issues and challenges in designing MEMS device for commercial and automotive applications. Topics to be covered in the class will include device simulation and design, design of experiments, compensation for cross-wafer and wafer-to-wafer fabrication variations, design for extreme environments, analysis and management of reliability issues including package stress, shock, drift, cost analysis of manufacturing processes, and some discussion of the unique challenges for consumer and automotive customers and markets. Student teams will develop a device design, fabrication process, and manufacturing analysis in response to a specification.
| Units: 3

ME 440: Electronic States and Transitions In Quantum Confined Structures

Summary of selected quantum mechanical concepts with focus on phenomena related to charge separation and transfer. The physics and thermodynamics of excitons described and related to experimental observations. The energy state of electrons as function of confinement size and strength. Presentations include on electron tunneling, measuring the density of electronic states, dielectric behavior of materials, Bose Einstein condensation of quasi particles, and excitons in quantum wells and dots.
| Units: 3

ME 450: Advances in Biotechnology

Guest academic and industrial speakers. Latest developments in fields such as bioenergy, green process technology, production of industrial chemicals from renewable resources, protein pharmaceutical production, industrial enzyme production, stem cell applications, medical diagnostics, and medical imaging. Biotechnology ethics, business and patenting issues, and entrepreneurship in biotechnology.
| Units: 3

ME 451B: Advanced Fluid Mechanics

Waves in fluids: surface waves, internal waves, inertial and acoustic waves, dispersion and group velocity, wave trains, transport due to waves, propagation in slowly varying medium, wave steepening, solitons and solitary waves, shock waves. Instability of fluid motion: dynamical systems, bifurcations, Kelvin-Helmholtz instability, Rayleigh-Benard convection, energy method, global stability, linear stability of parallel flows, necessary and sufficient conditions for stability, viscosity as a destabilizing factor, convective and absolute instability. Focus is on flow instabilities. Prerequisites: graduate courses in compressible and viscous flow.
| Units: 3

ME 451C: Advanced Fluid Mechanics

Compressible flow: governing equations, Crocco-Vazsonyi¿s equations, creation and destruction of vorticity by compressibility effects, shock waves. Modal decomposition of compressible flow, linear and nonlinear modal interactions, interaction of turbulence with shock waves. Energetics of compressible turbulence, effects of compressibility on free-shear flows, turbulent boundary layers, Van Direst transformation, recovery temperature, and shock/boundary layer interaction. Strong Reynolds analogy, modeling compressible turbulent flows. Prerequisites: 355, 361A, or equivalents.
| Units: 3

ME 453A: Finite Element-Based Modeling and Simulation of Linear Fluid/Structure Interaction Problems

Basic physics behind many fluid/structure interaction phenomena. Finite element-based computational approaches for linear modeling and simulation in the frequency domain. Vibrations of elastic structures. Linearized equations of small movements of inviscid fluids. Sloshing modes. Hydroelastic vibrations. Acoustic cavity modes. Structural-acoustic vibrations. Applications to liquid containers and underwater signatures. Prerequisite: graduate course in the finite element method or consent of instructor.
| Units: 3

ME 453B: Computational Fluid Dynamics Based Modeling of Nonlinear Fluid/Structure Interaction Problems

Basic physics behind many high-speed flow/structure interaction phenomena. Modern computational approaches for nonlinear modeling and simulation in the time domain. Dynamic equilibrium of restrained and unrestrained elastic structures. Corotational formulation for large structural displacements and rotations. Arbitrary Lagrangian-Eulerian description of inviscid and viscous flows. Time-accurate CFD on moving and deforming grids. Discrete geometric conservation laws. Discretization of transmission conditions on non-matching discrete fluid/structure interfaces. Coupled fluid/mesh-motion/structure time integration schemes. Application to divergence, flutter, and buffeting. Prerequisites: graduate course in the finite element method, and in computational fluid dynamics.
| Units: 3

ME 470: Uncertainty Quantification

Uncertainty analysis in computational science. Probabilistic data representation, propagation techniques and validation under uncertainty. Mathematical and statistical foundations of random variables and processes for uncertainty modeling. Focus is on state-of-the-art propagation schemes, sampling techniques, and stochastic Galerkin methods. The concept of model validation under uncertainty and the determination of confidence bounds estimates. Prerequisite: basic probability and statistics at the level of CME 106 or equivalent.
| Units: 3

ME 484: Computational Methods in Cardiovascular Bioengineering (BIOE 484)

Lumped parameter, one-dimensional nonlinear and linear wave propagation, and three-dimensional modeling techniques applied to simulate blood flow in the cardiovascular system and evaluate the performance of cardiovascular devices. Construction of anatomic models and extraction of physiologic quantities from medical imaging data. Problems in blood flow within the context of disease research, device design, and surgical planning.
| Units: 3

ME 495B: ME Seminar Series: At the Interface between Mechanical Engineering and Biology

Seminars will feature early career mechanical engineers working on leading edge problems in biomechanical engineering. Topics include mechanobiology, cell mechanics, transport phenomena in biological systems, bio-inspired design, design and analysis of biodevices or bioinstrumentation, biomaterials, and modeling of physiological systems. Guest speakers will come from top universities within the U.S. and internationally, and will discuss both their past research and plans for building a research program in the future.
| Units: 1
© Stanford University | Terms of Use | Copyright Complaints