Print Settings
 

PHYSICS 13N: A Taste of Quantum Physics (APPPHYS 13N)

What is quantum physics and what makes it so weird? We'll introduce key aspects of quantum physics with an aim to explain why it differs from everyday 'classical' physics. Quantum-enabled devices like the laser and atomic clocks for GPS will be explained. We will also discuss the breakthroughs driving the 2nd quantum technology revolution surrounding quantum simulators, sensors, and computers. Seminar discussions and a laser lab will help illustrate core principles, including the atomic clock mechanism. Visits to campus laboratories will introduce cutting-edge quantum experiments. This IntroSem is designed for those likely to go on to major in the humanities or in a STEM program outside of the natural sciences. (Likely STEM majors are instead encouraged to take 100-level quantum courses upon completion of pre-requirements.) While basic familiarity with high school physics is recommended, qualitative explanations will be emphasized. By the end of the quarter, you will be able to explain the key tenets of quantum physics, how it has enabled current technology, and what new technologies might emerge from the 2nd quantum revolution.
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA
Instructors: ; Lev, B. (PI)

PHYSICS 14N: Quantum Information: Visions and Emerging Technologies

What sets quantum information apart from its classical counterpart is that it can be encoded non-locally, woven into correlations among multiple qubits in a phenomenon known as entanglement. We will discuss paradigms for harnessing entanglement to solve hitherto intractable computational problems or to push the precision of sensors to their fundamental quantum mechanical limits. We will also examine challenges that physicists and engineers are tackling in the laboratory today to enable the quantum technologies of the future.
Terms: Spr | Units: 3 | UG Reqs: WAY-FR, WAY-SMA
Instructors: ; Manoharan, H. (PI)

PHYSICS 15: Stars and Planets in a Habitable Universe

How do stars form from the gas in galaxies? How do stars and galaxies evolve, and how can these processes give rise to planets and the conditions suitable for life? How do we, from our little corner of the cosmos, collect and decipher information about the Universe? This course covers the solar system and celestial motions, the life cycle of stars, the structure of our Milky Way galaxy, and the discovery of exoplanets: planets orbiting stars beyond our Sun. Intended to be accessible to non-science majors, the material is explored quantitatively with problem sets using basic algebra and numerical estimates. Sky observing and observatory field trips supplement the coursework.
Terms: Aut, Sum | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Clark, S. (PI)

PHYSICS 16: The Origin and Development of the Cosmos

How did the present Universe come to be? The last few decades have seen remarkable progress in understanding this age-old question. Course will cover the history of the Universe from its earliest moments to the present day, and the physical laws that govern its evolution. The early Universe including inflation and the creation of matter and the elements. Recent discoveries in our understanding of the makeup of the cosmos, including dark matter and dark energy. Evolution of galaxies, clusters, and quasars, and the Universe as a whole. Implications of dark matter and dark energy for the future evolution of the cosmos. Intended to be accessible to non-science majors, material is explored quantitatively with problem sets using basic algebra and numerical estimates.
Terms: Spr, Sum | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 17: Black Holes and Extreme Astrophysics

Black holes represent an extreme frontier of astrophysics. Course will explore the most fundamental and universal force -- gravity -- and how it controls the fate of astrophysical objects, leading in some cases to black holes. How we discover and determine the properties of black holes and their environment. How black holes and their event horizons are used to guide thinking about mysterious phenomena such as Hawking radiation, wormholes, and quantum entanglement. How black holes generate gravitational waves and powerful jets of particles and radiation. Other extreme objects such as pulsars. Relevant physics, including relativity, is introduced and treated at the algebraic level. No prior physics or calculus is required, although some deep thinking about space, time, and matter is important in working through assigned problems.
Last offered: Autumn 2020 | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 18N: Frontiers in Theoretical Physics and Cosmology

Preference to freshmen. The course will begin with a description of the current standard models of gravitation, cosmology, and elementary particle physics. We will then focus on frontiers of current understanding including investigations of very early universe cosmology, string theory, and the physics of black holes.
Last offered: Winter 2020 | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 21: Mechanics and Fluids

How are the motions of solids and liquids determined by the laws of physics? Students learn to describe the motion of objects (kinematics) and understand why objects move as they do (dynamics). Emphasis on applying Newton's laws to solids and liquids to describe diverse phenomena. Everyday examples are analyzed using tools of algebra and trigonometry. Problem-solving skills are developed, including verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Physical understanding fostered by peer interaction and interactive group problem solving. Prerequisite: high school algebra and trigonometry; calculus not required.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 21S: Mechanics and Heat

How are the motions of objects and the behavior of fluids and gases determined by the laws of physics? Students learn to describe the motion of objects (kinematics) and understand why objects move as they do (dynamics). Emphasis on how Newton's three laws of motion are applied to solids, liquids, and gases to describe phenomena as diverse as spinning gymnasts, blood flow, and sound waves. Understanding many-particle systems requires connecting macroscopic properties (e.g., temperature and pressure) to microscopic dynamics (collisions of particles). Laws of thermodynamics provide understanding of real-world phenomena such as energy conversion and performance limits of heat engines. Everyday examples are analyzed using tools of algebra and trigonometry. Problem-solving skills are developed, including verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Prerequisite: high school algebra and trigonometry; calculus not required.
| Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 22: Mechanics, Fluids, and Heat Laboratory

Guided hands-on exploration of concepts in classical mechanics, fluids, and thermodynamics with an emphasis on student predictions, observations and explanations. Pre- or corequisite: PHYSICS 21.
Terms: Aut | Units: 1
Instructors: ; Devin, J. (PI)

PHYSICS 23: Electricity, Magnetism, and Optics

How are electric and magnetic fields generated by static and moving charges, and what are their applications? How is light related to electromagnetic waves? Students learn to represent and analyze electric and magnetic fields to understand electric circuits, motors, and generators. The wave nature of light is used to explain interference, diffraction, and polarization phenomena. Geometric optics is employed to understand how lenses and mirrors form images. These descriptions are combined to understand the workings and limitations of optical systems such as the eye, corrective vision, cameras, telescopes, and microscopes. Discussions based on the language of algebra and trigonometry. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Prerequisite: PHYSICS 21 or PHYSICS 21S.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Schleier-Smith, M. (PI)

PHYSICS 23S: Electricity and Optics

How are electric and magnetic fields generated by static and moving charges, and what are their applications? How is light related to electromagnetic waves? Students learn to represent and analyze electric and magnetic fields to understand electric circuits, motors, and generators. The wave nature of light is used to explain interference, diffraction, and polarization phenomena. Geometric optics is employed to understand how lenses and mirrors form images. These descriptions are combined to understand the workings and limitations of optical systems such as the eye, corrective vision, cameras, telescopes, and microscopes. Discussions based on the language of algebra and trigonometry. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Prerequisite: PHYSICS 21 or PHYSICS 21S.
| Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 24: Electricity, Magnetism, and Optics Laboratory

Guided hands-on exploration of concepts in electricity and magnetism, circuits and optics with an emphasis on student predictions, observations and explanations. Introduction to multimeters and oscilloscopes. Pre- or corequisite: PHYS 23.
Terms: Win | Units: 1
Instructors: ; Devin, J. (PI)

PHYSICS 25: Modern Physics

How do the discoveries since the dawn of the 20th century impact our understanding of 21st-century physics? This course introduces the foundations of modern physics: Einstein's theory of special relativity and quantum mechanics. Combining the language of physics with tools from algebra and trigonometry, students gain insights into how the universe works on both the smallest and largest scales. Topics may include atomic, molecular, and laser physics; semiconductors; elementary particles and the fundamental forces; nuclear physics (fission, fusion, and radioactivity); astrophysics and cosmology (the contents and evolution of the universe). Emphasis on applications of modern physics in everyday life, progress made in our understanding of the universe, and open questions that are the subject of active research. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Prerequisite: PHYSICS 23 or PHYSICS 23S.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 26: Modern Physics Laboratory

Guided hands-on and simulation-based exploration of concepts in modern physics, including special relativity, quantum mechanics and nuclear physics with an emphasis on student predictions, observations and explanations. Pre- or corequisite: PHYSICS 25.
Terms: Spr | Units: 1
Instructors: ; Devin, J. (PI)

PHYSICS 41: Mechanics

How are motions of objects in the physical world determined by the laws of physics? Students learn to describe the motion of objects (kinematics) and then understand why motions have the form they do (dynamics). Emphasis on how the important physical principles in mechanics, such as conservation of momentum and energy for translational and rotational motion, follow from just three laws of nature: Newton's laws of motion. The distinction made between fundamental laws of nature and empirical rules that are useful approximations for more complex physics. Problems are drawn from examples of mechanics in everyday life. Skills developed in verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Discussions based on the language of mathematics, particularly vector representations and operations, and calculus. Physical understanding is fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem-solving. Please enroll in a section that you can attend regularly. In order to register for this class students who have never taken an introductory Physics course at Stanford must complete the Physics Placement Diagnostic at https://physics.stanford.edu/academics/undergraduate-students/placement-diagnostic. Students who complete the Physics Placement Diagnostic by 3 PM (Pacific) on Friday will have their hold lifted over the weekend. Prerequisites: Physics placement diagnostic AND Math 20 or higherCorequisites: Completion of OR co-enrollment of Math 21 or higher. Since high school math classes vary widely, it is recommended that you take at least one math class at Stanford before or concurrently with Physics 41. In addition, it is recommended that you take Math 51 or CME 100 before taking the next course in the Physics 40 series, Physics 43.
Terms: Aut, Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 41E: Mechanics, Concepts, Calculations, and Context

Physics 41E (Physics 41 Extended) is a 5-unit version of Physics 41 (4 units) for students with little or no high school physics. Course topics and mathematical complexity are similar, but not identical to Physics 41. There is an additional class meeting every week, and attendance at all class sessions is mandatory. The extra classroom time and corresponding extra study time outside of class allows students to engage with concepts and become fluent in mathematical tools that include vector representations and operations, and relevant calculus. There is a strong emphasis on developing problem-solving skills, particularly as applied to real world examples, to leave students prepared for subsequent engineering, physics, or related courses they may take. The course will explore important physical principles in mechanics including: using Newton's Laws and torque to analyze static structures and forces; understanding the equations of kinematics; and utilizing energy in its many forms and applications. Prerequisites: Physics placement diagnostic AND Math 20 or higher. Corequisites: Completion of OR co-enrollment of Math 21 or higher. Since high school math classes vary widely, it is recommended that you take at least one math class at Stanford before or concurrently with Physics 41. In addition, it is recommended that you take Math 51 or CME 100 before taking the next course in the Physics 40 series, Physics 43. Priority will be given to students who have had little physics background.
Terms: Win | Units: 5 | UG Reqs: WAY-SMA

PHYSICS 41S: STEMentors in Physics

STEMentors in Physics has been designed to provide timely support for students in PHYS 41 with study and problem-solving skills applicable in both physics and STEM courses in general. Students will join a small cohort of other PHYS 41 students looking to build community with and support other students in STEM. Weekly sections will focus on group activities and individual check-ins facilitated by a peer mentor who has previously taken PHYS 41. These activities are designed to normalize challenging experiences within a college science course, build key study skills such as how to effectively review lecture notes and practice problems, prepare for and reflect on exams, and reinforce problem-solving processes that will build student confidence over the quarter. Students should enroll in a weekly mentor section. Link to Mentor Bios:https://physics.stanford.edu/undergraduate/physics-stementors#:~:text=The%20Physics%20STEMentors%20program%20is,successful%20Chemistry%20Department%20STEMentors%20program. Co-Requisite: PHYS 41
Terms: Win | Units: 1

PHYSICS 42: Classical Mechanics Laboratory

Hands-on exploration of concepts in classical mechanics: Newton's laws, conservation laws, rotational motion. Introduction to laboratory techniques, experimental equipment and data analysis. Pre- or corequisite: PHYSICS 41.
Terms: Aut, Win | Units: 1
Instructors: ; Devin, J. (PI)

PHYSICS 43: Electricity and Magnetism

What is electricity? What is magnetism? How are they related? How do these phenomena manifest themselves in the physical world? The theory of electricity and magnetism, as codified by Maxwell's equations, underlies much of the observable universe. Students develop both conceptual and quantitative knowledge of this theory. Topics include: electrostatics; magnetostatics; simple AC and DC circuits involving capacitors, inductors, and resistors; integral form of Maxwell's equations; electromagnetic waves. Principles illustrated in the context of modern technologies. Broader scientific questions addressed include: How do physical theories evolve? What is the interplay between basic physical theories and associated technologies? Discussions based on the language of mathematics, particularly differential and integral calculus, and vectors. Physical understanding fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem solving. Prerequisite: PHYSICS 41, 41E or equivalent. MATH 21 or MATH 51 or CME 100 or equivalent. Recommended corequisite: MATH 52 or CME 102. Please make sure your AP scores are uploaded before enrollment opens.
Terms: Win, Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 43A: Electricity and Magnetism: Concepts, Calculations and Context

Additional assistance and applications for Physics 43. In-class problems in physics and engineering. Exercises in calculations of electric and magnetic forces and field to reinforce concepts and techniques; Calculations involving inductors, transformers, AC circuits, motors and generators. Highly recommended for students with limited or no high school physics or calculus. Corequisite: PHYSICS 43-34 or PHYSICS 43-35; Prerequisite: application at https://stanforduniversity.qualtrics.com/jfe/form/SV_da1PUm1scvnQ5IV .
Last offered: Spring 2020 | Units: 1

PHYSICS 44: Electricity and Magnetism Lab

Hands-on exploration of concepts in electricity, magnetism, and circuits. Introduction to multimeters, function generators, oscilloscopes, and graphing techniques. Pre- or corequisite: PHYSICS 43.
Terms: Win, Spr | Units: 1
Instructors: ; Devin, J. (PI)

PHYSICS 45: Light and Heat

What is temperature? How do the elementary processes of mechanics, which are intrinsically reversible, result in phenomena that are clearly irreversible when applied to a very large number of particles, the ultimate example being life? In thermodynamics, students discover that the approach of classical mechanics is not sufficient to deal with the extremely large number of particles present in a macroscopic amount of gas. The paradigm of thermodynamics leads to a deeper understanding of real-world phenomena such as energy conversion and the performance limits of thermal engines. In optics, students see how a geometrical approach allows the design of optical systems based on reflection and refraction, while the wave nature of light leads to interference phenomena. The two approaches come together in understanding the diffraction limit of microscopes and telescopes. Discussions based on the language of mathematics, particularly calculus. Physical understanding fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem solving. In order to register for this class students must EITHER have already taken an introductory Physics class (20, 40, or 60 sequence) or have taken the Physics Placement Diagnostic at https://physics.stanford.edu/academics/undergraduate-students/placement-diagnostic. Prerequisite: PHYSICS 41 or equivalent. MATH 21 or MATH 51 or CME 100 or equivalent.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Hayden, P. (PI)

PHYSICS 46: Light and Heat Laboratory

Hands-on exploration of concepts in geometrical optics, wave optics and thermodynamics. Pre- or corequisite: PHYSICS 45.
Terms: Aut | Units: 1
Instructors: ; Devin, J. (PI)

PHYSICS 50: Astronomy Laboratory and Observational Astronomy

Introduction to observational astronomy emphasizing the use of optical telescopes. Observations of stars, nebulae, and galaxies in laboratory sessions with telescopes at the Stanford Student Observatory. Meets at the observatory one evening per week from dusk until well after dark, in addition to day-time lectures each week. No previous physics required. Limited enrollment.
Last offered: Summer 2019 | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

PHYSICS 59: Frontiers of Physics Research

Recommended for prospective Physics or Engineering Physics majors or anyone with an interest in learning about the big questions and unknowns that physicists tackle in their research at Stanford. Weekly faculty presentations, in some cases followed by tours of experimental laboratories where the research is conducted.
Terms: Aut | Units: 1
Instructors: ; Tam, F. (PI)

PHYSICS 61: Mechanics and Special Relativity

(First in a three-part series: PHYSICS 61, PHYSICS 71, PHYSICS 81.) This course covers Einstein's special theory of relativity and Newtonian mechanics at a level appropriate for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics or are interested in a rigorous treatment of physics. Postulates of special relativity, simultaneity, time dilation, length contraction, the Lorentz transformation, the space-time invariant, causality, relativistic momentum and energy, and invariant mass. Central forces, friction, contact forces, linear restoring forces. Momentum, work, energy, collisions. Angular momentum, torque, center of mass, moment of inertia, precession. Conserved quantities. Uses the language of vectors and multivariable calculus. Requirements to enroll in the course: Completion of Physics Placement Diagnostic and/or completion of at least one course in PHYSICS 20 or 40 series. Completion of or co-enrollment in MATH 51 or MATH 61CM or MATH 61DM. Prerequisites: mechanics at the level of PHYSICS 41 or score of 5 on AP Physics C Mechanics or equivalent; calculus at the level of MATH 21 or score of 5 on AP Calculus BC or equivalent.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

PHYSICS 61L: Mechanics Laboratory

Introduction to laboratory techniques, experiment design, data collection and analysis simulations, and correlating observations with theory. Labs emphasize discovery with open-ended questions and hands-on exploration of concepts developed in PHYSICS 61 including Newton's laws, conservation laws, and rocket motion. Pre-or corequisite PHYSICS 61.This course was offered as PHYSICS 62 prior to Academic Year 2022-2023.
Terms: Aut | Units: 1
Instructors: ; Devin, J. (PI)

PHYSICS 70: Foundations of Modern Physics

Required for Physics or Engineering Physics majors who completed the PHYSICS 40 series. Introduction to special relativity: reference frames, Michelson-Morley experiment. Postulates of relativity, simultaneity, time dilation. Length contraction, the Lorentz transformation, causality. Doppler effect. Relativistic mechanics and mass, energy, momentum relations. Introduction to quantum physics: atoms, electrons, nuclei. Quantization of light, Planck constant. Photoelectric effect, Compton and Bragg scattering. Bohr model, atomic spectra. Matter waves, wave packets, interference. Fourier analysis and transforms, Heisenberg uncertainty relationships. Schrödinger equation, eigenfunctions and eigenvalues. Particle-in-a-box, simple harmonic oscillator, barrier penetration, tunneling, WKB, and approximate solutions. Time-dependent and multi-dimensional solution concepts. Coulomb potential and hydrogen atom structure. Prerequisites: PHYSICS 41, PHYSICS 43. Pre or corequisite: PHYSICS 45. Recommended: prior or concurrent registration in MATH 53. Physics 70 will no longer be offered after Autumn 2022.
Last offered: Autumn 2022 | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 71: Quantum and Thermal Physics

(Second in a three-part series: PHYSICS 61, PHYSICS 71, PHYSICS 81.) This course introduces the foundations of quantum mechanics and thermodynamics to students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics or are interested in a rigorous treatment of physics. Topics related to quantum mechanics include atoms, electrons, and nuclei. Experimental evidence for physics that is not explained by classical mechanics and E&M. Quantization of light, Planck's constant. Photoelectric effect, Compton and Bragg scattering. Bohr model, atomic spectra. Matter waves, wave packets, interference. Fourier analysis and transforms Heisenberg uncertainty relationships. Particle-in-a-box, simple harmonic oscillator, barrier penetration, tunneling. Topics related to thermodynamics: limitations of classical mechanics in describing systems with a very large number of particles. Ideal gas, equipartition, heat capacity, the definition of temperature, entropy. A brief introduction to kinetic theory and statistical mechanics. Maxwell speed distribution, ideal gas in a box. Laws of thermodynamics. Cycles, heat engines, free energy. Prerequisites: Physics 61 and (Math 51 or Math 61CM). Corequisite: Physics 43 or equivalent (e.g. AP Physics C E&M), MATH 52 or 62CM. This course was offered as PHYSICS 65 prior to Academic Year 2022-2023.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA
Instructors: ; Manoharan, H. (PI)

PHYSICS 71L: Modern Physics Laboratory

Experiments are drawn from optics, heat, and modern physics. Pre- or co-requisite: Physics 71.
Terms: Win | Units: 1
Instructors: ; Devin, J. (PI)

PHYSICS 81: Electricity and Magnetism Using Special Relativity and Vector Calculus

(Third in a three-part series: PHYSICS 61, PHYSICS 71, PHYSICS 81.) This course recasts the foundations of electricity and magnetism in a way that will surprise, delight, and challenge students who have already encountered the subject at a college or AP level. Suitable for students contemplating a major in Physics or Engineering Physics, those interested in a rigorous treatment of physics as a foundation for other disciplines, or those curious about powerful concepts like transformations, symmetry, and conservation laws. Electrostatics and Gauss' law. Electric potential, electric field, conductors, image charges. Electric currents, DC circuits. Moving charges, magnetic field as a consequence of special relativity applied to electrostatics, Ampere's law. Solenoids, transformers, induction, AC circuits, resonance. Displacement current, Maxwell's equations. Electromagnetic waves. Throughout, we'll see the objects and theorems of vector calculus become manifest in charges, currents, and electromagnetic fields. Prerequisite: A score of 5 on the AP Physics C E&M exam or Physics 43; Physics 61; and Math 52 or Math 62CM. Recommended prerequisite: Physics 71. Corequisite: Math 53 or Math 63CM. This course was offered as PHYSICS 63 prior to Academic Year 2022-2023.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

PHYSICS 83N: Physics in the 21st Century

Preference to freshmen. This course provides an in-depth examination of frontiers of physics research, including fundamental physics, cosmology, and physics of the future. Questions such as: What is the universe made of? What is the nature of space, time, and matter? What can we learn about the history of the universe and what does it tell us about its future? A large part of 20th century was defined by revolutions in physics - everyday applications of electromagnetism, relativity, and quantum mechanics. What other revolutions can physics bring to human civilization in the 21st century? What is quantum computing? What can physics say about consciousness? What does it take to visit other parts of the solar system, or even other stars? We will also learn to convey these complex topics in engaging and diverse terms to the general public through writing and reading assignments, oral presentations, and multimedia projects. No prior knowledge of physics is necessary; all voices are welcome to contribute to the discussion about these big ideas. Learning Goals: By the end of the quarter you will be able to explain the major questions that drive physics research to your friends and peers. You will understand how scientists study the impossibly small and impossibly large and be able to convey this knowledge in clear and concise terms.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Dimopoulos, S. (PI)

PHYSICS 89L: Introduction to Data Analysis, with Python and Jupyter

How do we draw conclusions about fundamental physics from experimental data? This course covers basic data analysis techniques and practical statistics used in experimental and computational physics research. Weekly Python-based labs will allow students to explore topics including data visualization, error propagation, evaluating hypotheses, and fitting analytical models. These labs incorporate real and simulated data from existing experiments such as a gamma-ray telescope and a detector that searches for dark matter. Students will learn to use Python libraries running in Jupyter Notebooks to analyze data and will, for example, study the rate at which the universe is expanding using existing data from multiple telescopes. No prior coding experience is required. Pre-requisite: Physics 61.
Terms: Spr | Units: 1
Instructors: ; Blakemore, C. (PI)

PHYSICS 91SI: Practical Computing for Scientists

Essential computing skills for researchers in the natural sciences. Helping students transition their computing skills from a classroom to a research environment. Topics include the Unix operating system, the Python programming language, and essential tools for data analysis, simulation, and optimization. More advanced topics as time allows. Prerequisite: CS106A or equivalent.
Last offered: Spring 2020 | Units: 2

PHYSICS 93SI: Beyond the Laboratory: Physics, Identity, and Society

Beyond its laws and laboratories, what can physics teach us about society and ourselves? How do physicists¿ identities impact the types of scientific questions that are asked throughout history? And who do we call a physicist? This course seeks to address questions such as these, with an eye to understanding how physics relates to history, politics, and our own identities as young researchers. Students will develop a broader appreciation for where physics comes from, how it relates to themselves, and how they can shape its future. No prior knowledge of physics is necessary; all voices are welcome to contribute to the discussion about these big ideas. As an optional addendum to 93SI, students can participate in POISE (Physics Outreach through Inclusive Science Education), an intensive spring break program in which the themes discussed during the course will be explored in more depth. During POISE, students will develop short workshops for high school students that are geared towards making Physics interesting and accessible. In addition, we will take frequent off-campus trips to Bay Area national labs, museums, companies, the beach, camping sites, and more! Our intention is to create a retreat-style experience in which students can learn more about themselves and each other as Physicists, and put their knowledge to good use in the classroom. Those wishing to participate in the spring break component should apply here, https://goo.gl/forms/KAOA0aCjD7QxxVbW2, and expect to be enrolled in 2 units. Those who are interested in only the course component should apply here, https://goo.gl/forms/xlrsDP0V2ESkMnbS2, and expect to be enrolled in 1 unit.
Last offered: Winter 2019 | Units: 1-2

PHYSICS 94SI: Diverse Perspectives in Physics

Have you ever wondered what it is like to be a professor, or what you could do with physics beyond academia? Do you want to hear about the life stories of people with diverse backgrounds who have studied or are studying physics? Professors and industry researchers possessing a diverse set of identities and backgrounds will share their journey in physics and their career trajectories, emphasizing their personal lives and experiences as undergraduates and graduate students. A Q&A session will follow.
Last offered: Spring 2021 | Units: 1

PHYSICS 96N: Harmony and the Universe

Harmony is a multifaceted concept that has profoundly connects music, mathematics, physics, philosophy, physiology, and psychology. We will explore the evolution of our understanding of harmony and its immediate application in the function of musical instruments, and employ it as a nexus to understand its role in revolutionary scientific advances in gravity, relativity, quantum mechanics, and cosmology. In these explorations, we will examine some of the fundamental mathematical tools which provide us our current understanding of harmony. We will also see how the some concepts surrounding harmony are in tension, if not conflict, and how some great thinkers have followed them down down blind alleys and dead ends. The aim of the course is to show the enormous consequences of harmony in the evolution of our understanding of the universe, and how science itself progresses in fits, starts, and setbacks as old ideas intermingle with new developments. We will also see how objective/quantitative aspects of harmony interact with subjective/qualitative considerations, and how cultural perspectives and prejudices can affect the progression of science.
Last offered: Summer 2021 | Units: 3 | UG Reqs: WAY-SMA

PHYSICS 100: Introduction to Observational Astrophysics

Designed for undergraduate physics majors but is open to all students with a calculus-based physics background and some laboratory and coding experience. Students make and analyze observations using the telescopes at the Stanford Student Observatory. Topics covered include navigating the night sky, the physics of stars and galaxies, telescope instrumentation and operation, imaging techniques, quantitative error analysis, and effective scientific communication. The course concludes with an independent project where student teams propose and execute an observational astronomy project of their choosing, using techniques learned in class to gather and analyze their data, and presenting their findings in the forms of professional-style oral presentations and research papers. Suggested preparation: Physics 89L. Enrollment by permission. Due to physical limitations at the observatory, this class has a firm enrollment cap. We may not be able to accommodate all requests to enroll. Before permission numbers are given students must complete this form: https://forms.gle/KDarBRcZWJZG3qr66.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

PHYSICS 104: Electronics and Introduction to Experimental Methods

Introductory laboratory electronics, intended for Physics and Engineering Physics majors but open to all students with science or engineering interests in analog circuits, instrumentation, and signal processing. The first part of the course is focused on hands-on exercises that build skills needed for measurements, including input/output impedance concepts, filters, amplifiers, sensors, and fundamentals of noise in physical systems. Lab exercises include DC circuits, RC and diode circuits, applications of operational amplifiers, optoelectronics, synchronous detection, and noise in measurements. The second portion of the class is an instrumentation design project, where essential instrumentation for a practical lab measurement is designed, constructed, and applied for an experiment. Example measurements can include temperature measurement in a cryostat, resistivity measurement of a superconducting material, measurement of the 2-D position of an optical beam, development of a high impedance ion probe and clamp for neuroscience, or other projects of personal interest. The course focuses on practical techniques and insight from the lab exercises, with the goal of preparing undergraduates for laboratory research. No formal electronics experience is required beyond exposure to concepts from introductory Physics or Engineering courses (Ohm's law, charge conservation, physics of capacitors and inductors, etc.). Students who have previously taken Physics 105 should not enroll in this course due to significant overlap. Recommended prerequisite: (Physics 43 and 44) OR (Physics 81 (formerly Physics 63) and 89L (formerly Physics 67), OR (Engineering 40A or 40M).
Terms: Aut | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA
Instructors: ; Fox, J. (PI)

PHYSICS 105: Intermediate Physics Laboratory I: Analog Electronics

Introductory laboratory electronics, designed for Physics and Engineering Physics majors but open to all students with science or engineering interests in analog circuits, instrumentation and signal processing. The course is focused on laboratory exercises that build skills needed for measurements, including sensors, amplification and filtering, and fundamentals of noise in physical systems. The hands-on lab exercises include DC circuits, RC and diode circuits, applications of operational amplifiers, non-linear circuits and optoelectronics. The class exercises build towards a lock-in amplifier contest where each lab section designs and builds a synchronous detection system to measure a weak optical signal, with opportunities to understand the limits of the design, build improvements and compare results with the other lab sections. The course focuses on practical techniques and insight from the lab exercises, with a goal to prepare undergraduates for laboratory research. No formal electronics experience is required beyond exposure to concepts from introductory Physics or Engineering courses (Ohm's law, charge conservation, physics of capacitors and inductors, etc.). Now offered as PHYSICS 104. Recommended prerequisite: Physics 43 or 63, or Engineering 40A or 40M.
Last offered: Autumn 2019 | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

PHYSICS 106: Experimental Methods in Quantum Physics

Experimental physics lab course aimed at providing an understanding of and appreciation for experimental methods in physics, including the capabilities and limitations, both fundamental and technical. Students perform experiments that use optics, lasers, and electronics to measure fundamental constants of nature, perform measurements at the atomic level, and analyze results. Goals include developing an understanding of measurement precision and accuracy through concepts of spectral-analysis of coherent signals combined with noise. We explore the fundamental limits to measurement set by thermal noise at finite temperature, as well as optical shot-noise in photo-detection that sets the standard quantum limit in detecting light. Spectroscopy of light emitted from atoms reveals the quantum nature of atomic energy levels, and when combined with theoretical models provides information on atomic structure and fundamental constants of nature (e.g. the fine structure constant that characterizes the strength of all electro-magnetic interactions, and the ratio of the electron mass to the proton mass, me/mp. Experiments may include laser spectroscopy to determine the interatomic potential, effective spring constant, and binding energy of a diatomic molecule, or measure the speed of light. This course will provide hands-on experience with semiconductor diode lasers, basic optics, propagation and detection of optical beams, and related electronics and laboratory instrumentation. For lab notebooks the class uses an integrated online environment for data analysis, curve fitting, (system is based on Jupyter notebooks, Python, and document preparation). Prerequisites: PHYSICS 40 series and PHYSICS 70, or 60 series, PHYSICS 120, PHYSICS 130; some familiarity with basic electronics is helpful but not required. Very basic programming in Python is needed, but background with Matlab, Origin, or similar software should be sufficient to come up to speed for the data analysis.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR
Instructors: ; Hollberg, L. (PI)

PHYSICS 107: Intermediate Physics Laboratory II: Experimental Techniques and Data Analysis

Experiments on lasers, Gaussian optics, and atom-light interaction, with emphasis on data and error analysis techniques. Students describe a subset of experiments in scientific paper format. Prerequisites: completion of PHYSICS 40 or PHYSICS 60 series, and PHYSICS 70 and PHYSICS 105. Recommended pre- or corequisites: PHYSICS 120 and 130. WIM
Last offered: Winter 2020 | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA

PHYSICS 108: Advanced Physics Laboratory: Project

Have you ever wanted to dream up a research question, then design, execute, and analyze an experiment to address it, together with a small group of your fellow students? This is an accelerated, guided experimental research experience, resembling real frontier research. Phenomena that have been studied include the magnetization of ferromagnets, the quantum hall effect in graphene, interference in superconducting circuits, loss in nanomechanical resonators, and superfluidity in helium. But most projects pursued (drawn from condensed matter and recently also particle physics) have never been done in the class before. Our equipment and apparatus for Physics 108 are very flexible, and not standardized like in most other lab classes. We provide substantial resources to help your team. Often, with instructors' help, students obtain unique samples from Stanford research groups. Prerequisite: PHYSICS 104, or other experience in electronics. Suggested but less critical: Physics 130 (many phenomena you might study build on quantum mechanics) and Physics 106 (experience with data analysis and useful measurement tools: lock-in amplifier, spectrum analyzer.) We recommend taking this class in junior year if possible, as it can inform post-graduation decisions and can empower the professor to write a powerful letter of recommendation.
Terms: Spr | Units: 5 | UG Reqs: WAY-AQR, WAY-SMA

PHYSICS 110: Advanced Mechanics (PHYSICS 210)

Lagrangian and Hamiltonian mechanics. Principle of least action, Euler-Lagrange equations. Small oscillations and beyond. Symmetries, canonical transformations, Hamilton-Jacobi theory, action-angle variables. Introduction to classical field theory. Selected other topics, including nonlinear dynamical systems, attractors, chaotic motion. Undergraduates register for Physics 110 (4 units). Graduates register for Physics 210 (3 units). Prerequisites: MATH 131P or PHYSICS 111. Recommended prerequisite: PHYSICS 130.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

PHYSICS 111: Partial Differential Equations of Mathematical Physics

This course is intended to introduce students to the basic techniques for solving partial differential equations that commonly occur in classical mechanics, electromagnetism, and quantum mechanics. Tools that will be developed include separation of variables, Fourier series and transforms, and Sturm-Liouville theory. Examples (including the heat equation, Laplace equation, and wave equation) will be drawn from different areas of physics. Through examples, students will gain a familiarity with some of the famous special functions arising in mathematical physics. Prerequisite: MATH 53 or 63. Completing PHYSICS 40 or 60 sequences helpful.
Terms: Aut | Units: 4

PHYSICS 112: Mathematical Methods for Physics

The course will focus on the theory of functions of a complex variable - with broad implications in many areas of physics. As time allows, we will also cover the basics of group theory and the theory of group representations, with focus on symmetry groups that arise in various physical settings. Prerequisites: MATH 53 or equivalent and Physics 111 or the equivalent.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR

PHYSICS 113: Computational Physics

Numerical methods for solving problems in mechanics, astrophysics, electromagnetism, quantum mechanics, and statistical mechanics. Methods include numerical integration; solutions of ordinary and partial differential equations; solutions of the diffusion equation, Laplace's equation, and Poisson's equation with various methods; statistical methods including Monte Carlo techniques; matrix methods and eigenvalue problems. A short introduction to Python, which is used for class examples and active learning notebooks. Independent class projects allow deep explorations of course topics and make up a significant component of the course grade. No prerequisites but some previous programming experience is advisable.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-FR

PHYSICS 120: Intermediate Electricity and Magnetism I

Vector analysis. Electrostatic fields, including boundary-value problems and multipole expansion. Dielectrics, static and variable magnetic fields, magnetic materials. Maxwell's equations. Prerequisites: PHYSICS 81; MATH 52 and MATH 53. Pre- or corequisite: PHYS 111 or MATH 131P or MATH 173 or Math 220.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

PHYSICS 121: Intermediate Electricity and Magnetism II

Conservation laws and electromagnetic waves, Poynting's theorem, tensor formulation, potentials, and fields. Plane-wave problems (free space, conductors and dielectric materials, boundaries). Dipole and quadruple radiation. Special relativity and transformation between electric and magnetic fields. Prerequisites: PHYS 120 and PHYS 111 or MATH 131P or MATH 173;
Terms: Spr | Units: 4

PHYSICS 130: Quantum Mechanics I

The origins of quantum mechanics and wave mechanics. Schr¿dinger equation and solutions for one-dimensional systems. Commutation relations. Generalized uncertainty principle. Time-energy uncertainty principle. Separation of variables and solutions for three-dimensional systems; application to a hydrogen atom. Spherically symmetric potentials and angular momentum eigenstates. Spin angular momentum. Addition of angular momentum. Prerequisites: (PHYSICS 65 or PHYSICS 70 or PHYSICS 71) and (PHYSICS 111 or MATH 131P or MATH 173 or MATH 220) and PHYSICS 120.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

PHYSICS 131: Quantum Mechanics II

Identical particles; Fermi and Bose statistics. Time-independent perturbation theory. Fine structure, the Zeeman effect, and hyperfine splitting in the hydrogen atom. Time-dependent perturbation theory. Variational principle and WKB approximation. Prerequisite: PHYSICS 130 and (PHYSICS 111 or MATH 131P or MATH 173 or MATH 220) and PHYSICS 120.
Terms: Aut | Units: 4

PHYSICS 134: Advanced Topics in Quantum Mechanics (PHYSICS 234)

Scattering theory, partial wave expansion, Born approximation. Additional topics may include nature of quantum measurement, EPR paradox, Bell's inequality, and topics in quantum information science; path integrals and applications; Berry's phase; structure of multi-electron atoms (Hartree-Fock); relativistic quantum mechanics (Dirac equation). Undergraduates register for PHYSICS 134 (4 units). Graduate students register for PHYSICS 234 (3 units). Prerequisite: PHYSICS 131.
Terms: Win | Units: 3-4

PHYSICS 152: Introduction to Particle Physics I (PHYSICS 252)

Elementary particles and the fundamental forces. Quarks and leptons. The mediators of the electromagnetic, weak and strong interactions. Interaction of particles with matter; particle acceleration, and detection techniques. Symmetries and conservation laws. Bound states. Decay rates. Cross sections. Feynman diagrams. Introduction to Feynman integrals. The Dirac equation. Feynman rules for quantum electrodynamics and for chromodynamics. Undergraduates register for PHYSICS 152. Graduate students register for PHYSICS 252. (Graduate students will be required to complete additional assignments in a format determined by the instructor.) Prerequisite: PHYSICS 130.
Terms: Spr | Units: 3
Instructors: ; Vernieri, C. (PI)

PHYSICS 155: Accelerators and Beams: Tools of Discovery and Innovation

Particle accelerators range in scale from sub-mm structures created using lithography on a silicon chip to the 27-km Large Hadron Collider in Switzerland based on superconducting magnets. Some accelerators generate beams that are only nanometers in size while others are used to make the brightest x-ray beams in the world. Accelerators are used for medicine, security, and industry as well as discovery science. A recent study shows that nearly 30% of the Nobel Prizes in Physics had a direct contribution from accelerators. This course will cover the fundamentals of particle beam acceleration and control. Topics will include radio-frequency acceleration, alternate gradient focusing, and collective effects where electromagnetic fields from the particle beam act back on the beam or on adjacent beams. Some experimental studies of beam physics may be performed at the SLAC National Accelerator Laboratory. Prerequisites: Special relativity at the level of Physics 61 or 70, or equivalent. Physics 120 and 121, or EE 142 and 242; Physics 121/EE 142 can be taken concurrently with class.
Last offered: Spring 2022 | Units: 3

PHYSICS 160: Introduction to Stellar and Galactic Astrophysics (PHYSICS 260)

Radiative processes. Observed characteristics of stars and the Milky Way galaxy. Physical processes in stars and matter under extreme conditions. Structure and evolution of stars from birth to death. White dwarfs, planetary nebulae, supernovae, neutron stars, pulsars, binary stars, x-ray stars, and black holes. Galactic structure, interstellar medium, molecular clouds, HI and HII regions, star formation, and element abundances. Undergraduates register for PHYSICS 160. Graduate students register for PHYSICS 260. Pre-requisite: Physics 120 or permission of instructor. Recommended: Some familiarity with plotting and basic numerical calculations.
Terms: Win | Units: 3
Instructors: ; Romani, R. (PI)

PHYSICS 161: Introduction to Cosmology and Extragalactic Astrophysics (PHYSICS 261)

What do we know about the physical origins, content, and evolution of the Universe -- and how do we know it? Students learn how cosmological distances and times, and the geometry and expansion of space, are described and measured. Composition of the Universe. Origin of matter and the elements. Observational evidence for dark matter and dark energy. Thermal history of the Universe, from inflation to the present. Emergence of large-scale structure from quantum perturbations in the early Universe. Astrophysical tools used to learn about the Universe. Big open questions in cosmology. Undergraduates register for Physics 161. Graduates register for Physics 261. (Graduate students will be required to complete additional assignments in a format determined by the instructor.) Prerequisite: PHYSICS 120 or equivalent.
Terms: Spr | Units: 3
Instructors: ; Petrosian, V. (PI)

PHYSICS 166: Statistical Methods in Experimental Physics (PHYSICS 266)

Statistical methods constitute a fundamental tool for the analysis and interpretation of experimental physics data. In this course, students will learn the foundations of statistical data analysis methods and how to apply them to the analysis of experimental data. Problem sets will include data-sets from real experiments and require the use of programming tools to extract physics results. Topics include probability and statistics, experimental uncertainties, parameter estimation, confidence limits, and hypothesis testing. Students will be required to complete a final project.
Terms: Win | Units: 4
Instructors: ; Schwartzman, A. (PI)

PHYSICS 170: Thermodynamics, Kinetic Theory, and Statistical Mechanics I

Basic probability and statistics for random processes such as random walks. The derivation of laws of thermodynamics from basic postulates; the determination of the relationship between atomic substructure and macroscopic behavior of matter. Temperature; equations of state, heat, internal energy, equipartition; entropy, Gibbs paradox; equilibrium and reversibility; heat engines; applications to various properties of matter; absolute zero and low-temperature phenomena. Distribution functions, fluctuations, the partition function for classical and quantum systems, and irreversible processes. Pre- or corequisite: PHYSICS 130 or EE 222.
Terms: Win | Units: 4

PHYSICS 171: Thermodynamics, Kinetic Theory, and Statistical Mechanics II

Mean-field theory of phase transitions; critical exponents. Ferromagnetism, the Ising model. The renormalization group. Dynamics near equilibrium: Brownian motion, diffusion, Boltzmann equations. Other topics are at the discretion of the instructor. Prerequisite: PHYSICS 170. Recommended pre- or corequisite: PHYSICS 130.
Terms: Spr | Units: 4

PHYSICS 172: Solid State Physics (APPPHYS 272)

Introduction to the properties of solids. Crystal structures and bonding in materials. Momentum-space analysis and diffraction probes. Lattice dynamics, phonon theory and measurements, thermal properties. Electronic structure theory, classical and quantum; free, nearly-free, and tight-binding limits. Electron dynamics and basic transport properties; quantum oscillations. Properties and applications of semiconductors. Reduced-dimensional systems. Undergraduates should register for PHYSICS 172 and graduate students for APPPHYS 272. Prerequisites: PHYSICS 170 and PHYSICS 171, or equivalents.
Terms: Spr | Units: 3

PHYSICS 182: ULTRACOLD QUANTUM PHYSICS (APPPHYS 282, PHYSICS 282)

Introduction to the physics of quantum optics and atoms in the ultracold setting. Quantum gases and photons are employed in quantum simulation, sensing, and computation. Modern atomic physics and quantum optics will be covered, including laser cooling and trapping, ultracold collisions, optical lattices, ion traps, cavity QED, BEC and quantum degenerate Fermi gases, and quantum phase transitions in quantum gases and lattices. Prerequisites: Undergraduate quantum and statistical mechanics courses.
Terms: Win | Units: 3
Instructors: ; Lev, B. (PI)

PHYSICS 190: Independent Research and Study

Undergraduate research in experimental or theoretical physics under the supervision of a faculty member. The faculty member will prepare a list of goals and expectations at the start of the research. The student will prepare a written summary of research accomplished by the end. Prerequisites: superior work as an undergraduate Physics major and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit

PHYSICS 191: Scientific Communication in Physics

Development and practice of effective scientific communication in physics, including scientific publications, research proposals, science writing for a general audience, and effective communication of data. The course will involve extensive writing, reviewing, and revision, including responding effectively to critiques. Satisfies the WIM requirement for Physics and Engineering Physics majors. Intended for juniors and seniors. Prerequisites: two years of college-level physics (e.g., completion of Physics 120).
Terms: Win | Units: 3

PHYSICS 192: Physics Capstone Paper

Students enroll in this course in order to complete their Capstone paper if they have chosen that option to fulfill their Capstone requirement. Note that students may alternatively write their Capstone paper as part of Physics 191. Students should enroll in this course with their official research project advisor as the instructor. During this course, the student will complete a journal-style (e.g. PRL-style) article on their research project. A passing grade in this course signifies the student has completed the Physics Capstone requirement. Instructor permission is required to enroll. Only Physics majors may enroll in this course.
| Units: 1

PHYSICS 198: Learning Assistant Training Seminar

Training seminar for undergraduate students selected for the Learning Assistant (LA) program. In this seminar LAs learn and practice pedagogical techniques they will apply in an active learning classroom. LAs practice instruction strategies in a collaborative small group setting, with regular reflection and feedback. In addition, LAs learn mentoring practices to help fellow undergraduates develop academic skills. The seminar meets 90 minutes weekly with additional readings and reflection outside of class.
Last offered: Winter 2023 | Units: 1

PHYSICS 199: The Physics of Energy and Climate Change (PHYSICS 201)

Topics include measurements of temperature and sea level changes in the climate record of the Earth, satellite atmospheric spectroscopy, satellite gravity geodesy measurements of changes in water aquifers and glaciers, and ocean changes. The difference between weather fluctuations changes and climate change, climate models and their uncertainties in the context of physical, chemical and biological feedback mechanisms to changes in greenhouse gases and solar insolation will be discussed. Energy efficiency, transmission and distribution of electricity, energy storage, and the physics of harnessing fossil, wind, solar, geothermal, fission and fusion will be covered, along with prospects of future technological developments in energy use and production. Prerequisite: Physics 40 or Physics 60 series.
Last offered: Spring 2021 | Units: 3

PHYSICS 201: The Physics of Energy and Climate Change (PHYSICS 199)

Topics include measurements of temperature and sea level changes in the climate record of the Earth, satellite atmospheric spectroscopy, satellite gravity geodesy measurements of changes in water aquifers and glaciers, and ocean changes. The difference between weather fluctuations changes and climate change, climate models and their uncertainties in the context of physical, chemical and biological feedback mechanisms to changes in greenhouse gases and solar insolation will be discussed. Energy efficiency, transmission and distribution of electricity, energy storage, and the physics of harnessing fossil, wind, solar, geothermal, fission and fusion will be covered, along with prospects of future technological developments in energy use and production. Prerequisite: Physics 40 or Physics 60 series.
Last offered: Spring 2021 | Units: 3

PHYSICS 205: Senior Thesis Research

Long-term experimental or theoretical project and thesis in Physics under supervision of a faculty member. Planning of the thesis project is recommended to begin as early as middle of the junior year. Successful completion of a senior thesis requires a minimum of 3 units for a letter grade completed during the senior year, along with the other formal thesis and physics major requirements. Students doing research for credit prior to senior year should sign up for Physics 190. Prerequisites: superior work as an undergraduate Physics major and approval of the thesis application.
Terms: Aut, Win, Spr, Sum | Units: 1-12 | Repeatable for credit

PHYSICS 210: Advanced Mechanics (PHYSICS 110)

Lagrangian and Hamiltonian mechanics. Principle of least action, Euler-Lagrange equations. Small oscillations and beyond. Symmetries, canonical transformations, Hamilton-Jacobi theory, action-angle variables. Introduction to classical field theory. Selected other topics, including nonlinear dynamical systems, attractors, chaotic motion. Undergraduates register for Physics 110 (4 units). Graduates register for Physics 210 (3 units). Prerequisites: MATH 131P or PHYSICS 111. Recommended prerequisite: PHYSICS 130.
Terms: Aut | Units: 3-4

PHYSICS 211: Continuum Mechanics

Elasticity, fluids, turbulence, waves, gas dynamics, shocks, and MHD plasmas. Examples from everyday phenomena, geophysics, and astrophysics.
Last offered: Winter 2019 | Units: 3

PHYSICS 212: Statistical Mechanics

Principles, ensembles, statistical equilibrium. Thermodynamic functions, ideal and near-ideal gases. Fluctuations. Mean-field description of phase-transitions and associated critical exponents. One-dimensional Ising model and other exact solutions. Renormalization and scaling relations. Prerequisites: PHYSICS 131, 171, or equivalents.
Terms: Aut | Units: 3
Instructors: ; Shenker, S. (PI)

PHYSICS 216: Back of the Envelope Physics

This course will cover order of magnitude or approximate, low-tech approaches to estimating physical effects in various systems. One goal is to promote a synthesis of understanding of basic physics (including quantum mechanics, electromagnetism, and physics of fluids) through solving various classic problems. Another goal will be to learn how to decide which terms in complicated equations can be omitted or simplified - and to obtain general features of the solution without solving them in their full complexity. We will be applying techniques such as scaling and dimensional analysis - with the overarching goal to develop physical intuition.
Terms: Spr | Units: 2
Instructors: ; Simon, J. (PI); Tan, T. (TA)

PHYSICS 220: Classical Electrodynamics

Special relativity: The principles of relativity, Lorentz transformations, four vectors and tensors, relativistic mechanics and the principle of least action. Lagrangian formulation, charges in electromagnetic fields, gauge invariance, the electromagnetic field tensor, covariant equations of electrodynamics and mechanics, four-current and continuity equation. Noether's theorem and conservation laws, Poynting's theorem, stress-energy tensor. Constant electromagnetic fields: conductors and dielectrics, magnetic media, electric and magnetic forces, and energy. Electromagnetic waves: Plane and monochromatic waves, spectral resolution, polarization, electromagnetic properties of matter, dispersion relations, wave guides and cavities. Prerequisites: PHYSICS 121 and PHYSICS 210, or equivalent; MATH 106 or MATH 116, and MATH 132 or equivalent.
Terms: Win | Units: 3
Instructors: ; Raghu, S. (PI)

PHYSICS 223: Stochastic and Nonlinear Dynamics (APPPHYS 223, BIO 223, BIOE 213)

Theoretical analysis of dynamical processes: dynamical systems, stochastic processes, and spatiotemporal dynamics. Motivations and applications from biology and physics. Emphasis is on methods including qualitative approaches, asymptotics, and multiple scale analysis. Prerequisites: ordinary and partial differential equations, complex analysis, and probability or statistical physics.
Terms: Aut | Units: 3
Instructors: ; Fisher, D. (PI)

PHYSICS 230: Graduate Quantum Mechanics I

Fundamental concepts. Introduction to Hilbert spaces and Dirac's notation. Postulates applied to simple systems, including those with periodic structure. Symmetry operations and gauge transformation. The path integral formulation of quantum statistical mechanics. Problems related to measurement theory. The quantum theory of angular momenta and central potential problems. Prerequisite: PHYSICS 131 or equivalent.
Terms: Win | Units: 3
Instructors: ; Kivelson, S. (PI)

PHYSICS 231: Graduate Quantum Mechanics II

Basis for higher level courses on atomic solid state and particle physics. Problems related to measurement theory and introduction to quantum computing. Approximation methods for time-independent and time-dependent perturbations. Semiclassical and quantum theory of radiation, second quantization of radiation and matter fields. Systems of identical particles and many electron atoms and molecules. Prerequisite: PHYSICS 230.
Terms: Spr | Units: 3
Instructors: ; Laughlin, R. (PI)

PHYSICS 234: Advanced Topics in Quantum Mechanics (PHYSICS 134)

Scattering theory, partial wave expansion, Born approximation. Additional topics may include nature of quantum measurement, EPR paradox, Bell's inequality, and topics in quantum information science; path integrals and applications; Berry's phase; structure of multi-electron atoms (Hartree-Fock); relativistic quantum mechanics (Dirac equation). Undergraduates register for PHYSICS 134 (4 units). Graduate students register for PHYSICS 234 (3 units). Prerequisite: PHYSICS 131.
Terms: Win | Units: 3-4

PHYSICS 240: Introduction to the Physics of Energy

Energy as a consumable. Forms and interconvertability. World Joule budget. Equivalents in rivers, oil pipelines and nuclear weapons. Quantum mechanics of fire, batteries and fuel cells. Hydrocarbon and hydrogen synthesis. Fundamental limits to mechanical, electrical and magnetic strengths of materials. Flywheels, capacitors and high pressure tanks. Principles of AC and DC power transmission. Impossibility of pure electricity storage. Surge and peaking. Solar constant. Photovoltaic and thermal solar conversion. Physical limits on agriculture.
Terms: Aut | Units: 3
Instructors: ; Laughlin, R. (PI)

PHYSICS 241: Introduction to Nuclear Energy

Radioactivity. Elementary nuclear processes. Energetics of fission and fusion. Cross-sections and resonances. Fissionable and fertile isotopes. Neutron budgets. Light water, heavy water and graphite reactors. World nuclear energy production. World reserves of uranium and thorium. Plutonium, reprocessing and proliferation. Half lives of fission decay products and actinides made by neutron capture. Nuclear waste. Three Mile Island and Chernobyl. Molten sodium breeders. Generation-IV reactors. Inertial confinement and magnetic fusion. Laser compression. Fast neutron production and fission-fusion hybrids. Prerequisities: Strong undergraduate background in elementary chemistry and physics. PHYSICS 240 and PHYSICS 252 recommended but not required. Interested undergraduates encouraged to enroll, with permission of instructor.
Terms: Win | Units: 3
Instructors: ; Laughlin, R. (PI)

PHYSICS 252: Introduction to Particle Physics I (PHYSICS 152)

Elementary particles and the fundamental forces. Quarks and leptons. The mediators of the electromagnetic, weak and strong interactions. Interaction of particles with matter; particle acceleration, and detection techniques. Symmetries and conservation laws. Bound states. Decay rates. Cross sections. Feynman diagrams. Introduction to Feynman integrals. The Dirac equation. Feynman rules for quantum electrodynamics and for chromodynamics. Undergraduates register for PHYSICS 152. Graduate students register for PHYSICS 252. (Graduate students will be required to complete additional assignments in a format determined by the instructor.) Prerequisite: PHYSICS 130.
Terms: Spr | Units: 3
Instructors: ; Vernieri, C. (PI)

PHYSICS 260: Introduction to Stellar and Galactic Astrophysics (PHYSICS 160)

Radiative processes. Observed characteristics of stars and the Milky Way galaxy. Physical processes in stars and matter under extreme conditions. Structure and evolution of stars from birth to death. White dwarfs, planetary nebulae, supernovae, neutron stars, pulsars, binary stars, x-ray stars, and black holes. Galactic structure, interstellar medium, molecular clouds, HI and HII regions, star formation, and element abundances. Undergraduates register for PHYSICS 160. Graduate students register for PHYSICS 260. Pre-requisite: Physics 120 or permission of instructor. Recommended: Some familiarity with plotting and basic numerical calculations.
Terms: Win | Units: 3
Instructors: ; Romani, R. (PI)

PHYSICS 261: Introduction to Cosmology and Extragalactic Astrophysics (PHYSICS 161)

What do we know about the physical origins, content, and evolution of the Universe -- and how do we know it? Students learn how cosmological distances and times, and the geometry and expansion of space, are described and measured. Composition of the Universe. Origin of matter and the elements. Observational evidence for dark matter and dark energy. Thermal history of the Universe, from inflation to the present. Emergence of large-scale structure from quantum perturbations in the early Universe. Astrophysical tools used to learn about the Universe. Big open questions in cosmology. Undergraduates register for Physics 161. Graduates register for Physics 261. (Graduate students will be required to complete additional assignments in a format determined by the instructor.) Prerequisite: PHYSICS 120 or equivalent.
Terms: Spr | Units: 3
Instructors: ; Petrosian, V. (PI)

PHYSICS 262: General Relativity

Einstein's General Theory of Relativity is a basis for modern ideas of fundamental physics, including string theory, as well as for studies of cosmology and astrophysics. The course begins with an overview of special relativity, and the description of gravity as arising from curved space. From Riemannian geometry and the geodesic equations, to curvature, the energy-momentum tensor, and the Einstein field equations. Applications of General Relativity: topics may include experimental tests of General Relativity and the weak-field limit, black holes (Schwarzschild, charged Reissner-Nordstrom, and rotating Kerr black holes), gravitational waves (including detection methods), and an introduction to cosmology (including cosmic microwave background radiation, dark energy, and experimental probes). Prerequisite: PHYSICS 121 or equivalent including special relativity.
Terms: Aut | Units: 3
Instructors: ; Graham, P. (PI)

PHYSICS 266: Statistical Methods in Experimental Physics (PHYSICS 166)

Statistical methods constitute a fundamental tool for the analysis and interpretation of experimental physics data. In this course, students will learn the foundations of statistical data analysis methods and how to apply them to the analysis of experimental data. Problem sets will include data-sets from real experiments and require the use of programming tools to extract physics results. Topics include probability and statistics, experimental uncertainties, parameter estimation, confidence limits, and hypothesis testing. Students will be required to complete a final project.
Terms: Win | Units: 4
Instructors: ; Schwartzman, A. (PI)

PHYSICS 267: Statistical Methods in Astrophysics

(Formerly numbered PHYSICS 366) Foundations of principled inference from data, primarily in the Bayesian framework, with applications in astrophysics and cosmology. Topics include probabilistic modeling of data, parameter constraints and model comparison, numerical methods including Markov Chain Monte Carlo, and connections to frequentist and machine learning frameworks. The course is organized around tutorial notebooks using Python and Numpy, providing hands-on experience with real data. Prerequisites: programming in Python at the level of CS 106A or PHYSICS 113; probability at the level of STATS 116, CS 109, or PHYSICS 166/266; or permission of instructor. Normally offered every 2 years.
| Units: 3

PHYSICS 268: Physics with Neutrinos

Relativistic fermions, Weyl and Dirac equations, Majorana masses. Electroweak theory, neutrino cross sections, neutrino refraction in matter, MSW effect. Three-flavor oscillations, charge-parity violation, searches for sterile neutrinos, modern long- and short-baseline oscillation experiments. Seesaw mechanism, models of neutrino masses, lepton flavor violation. Neutrinoless double beta decay. Cosmological constraints on neutrino properties. Advanced topics, such as collective oscillations in supernovae or ultrahigh energy neutrinos, offered as optional projects. The material in this course is largely complementary to PHYS 269, focusing on particle physics aspects of neutrinos. Prerequisites: PHYSICS 121, 131 and 171 or equivalent. PHYS 230-231, 269, 152 and 161 or equivalent are helpful, but not required.
Last offered: Spring 2019 | Units: 3

PHYSICS 269: Neutrinos in Astrophysics and Cosmology

Basic neutrino properties. Flavor evolution in vacuum and in matter. Oscillations of atmospheric, reactor and beam neutrinos. Measurements of solar neutrinos; physics of level-crossing and the resolution of the solar neutrino problem. Roles of neutrinos in stellar evolution; bounds from stellar cooling. Neutrinos and stellar collapse; energy transport, collective flavor oscillations, neutrino flavor in turbulent medium. Ultra-high-energy neutrinos. The cosmic neutrino background, its impact on the cosmic microwave background and structure formation; cosmological bounds on the neutrino sector. Prerequisites/corerequisites: PHYSICS 121, 131 and 171 or equivalent. PHYS 230-231, 152 and 161 or equivalent are helpful, but not required. May be repeat for credit
Last offered: Winter 2021 | Units: 3 | Repeatable for credit

PHYSICS 275: Electrons in Nanostructures

The strange behavior of electrons in metals or semiconductors at length scales below 1 micron, smaller than familiar macroscopic objects but larger than atoms. Ballistic transport, Coulomb blockade, localization, quantum mechanical interference, persistent currents, graphene, topological insulators, 1D wires. After a few background lectures, students come to each class session prepared to discuss one or more classic review articles or recent experimental publications.Prerequisite: undergraduate quantum mechanics and solid state physics preferred; physicists, engineers, chemists welcome.
Last offered: Winter 2023 | Units: 3

PHYSICS 276: Electrons in Low Dimensional and Narrow Band Systems

Electrons in low-dimensional and narrow-band systems often display novel and extreme properties - unconventional superconductivity quantum hall effects, quantum mechanical interference, and localization, interplay of correlation and topology, natural and engineered (e.g., twist stacking) narrow-band systems with rich and unexpected behavior. After a few background lectures, students come to each class session prepared to discuss one or more classic review articles or recent experimental publications. Prerequisite: undergraduate quantum mechanics and solid-state physics preferred; physicists, engineers, and chemists welcome.
Terms: Win | Units: 3
Instructors: ; Shen, Z. (PI)

PHYSICS 282: ULTRACOLD QUANTUM PHYSICS (APPPHYS 282, PHYSICS 182)

Introduction to the physics of quantum optics and atoms in the ultracold setting. Quantum gases and photons are employed in quantum simulation, sensing, and computation. Modern atomic physics and quantum optics will be covered, including laser cooling and trapping, ultracold collisions, optical lattices, ion traps, cavity QED, BEC and quantum degenerate Fermi gases, and quantum phase transitions in quantum gases and lattices. Prerequisites: Undergraduate quantum and statistical mechanics courses.
Terms: Win | Units: 3
Instructors: ; Lev, B. (PI)

PHYSICS 290: Research Activities at Stanford

Required of first-year Physics graduate students; suggested for junior or senior Physics majors for 1 unit. Review of research activities in the department and elsewhere at Stanford at a level suitable for entering graduate students.
Terms: Aut | Units: 1
Instructors: ; Tam, F. (PI)

PHYSICS 291: Curricular Practical Training

Curricular practical training for students participating in an internship with a physics-related focus. Meets the requirements for curricular practical training for students on F-1 visas. Prior to the internship, students submit a concise description of the proposed project and work activities. After the internship, students submit a summary of the work completed and skills learned, including a reflection on the professional growth gained as a result of the internship. This course may be repeated for credit. Students are responsible for arranging their own internship/employment and faculty sponsorship. Register under faculty sponsor's section number.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable 9 times (up to 27 units total)

PHYSICS 293: Literature of Physics

Study of the literature of any special topic. Preparation, presentation of reports. If taken under the supervision of a faculty member outside the department, approval of the Physics chair required. Prerequisites: 25 units of college physics, consent of instructor.
Terms: Spr, Sum | Units: 1-15 | Repeatable for credit

PHYSICS 294: Teaching of Physics Seminar

Weekly seminar/discussions on interactive techniques for teaching physics. Practicum which includes class observations, grading, and student teaching in current courses. Required of all Teaching Assistants prior to the first teaching assignment. Mandatory attendance at weekly in-class sessions during the first 5 weeks of the quarter; mandatory successful completion of all practicum activities. Students who do not hold a US Passport must complete the International Teaching/Course Assistant Screening Exam and be cleared to TA before taking the class. Details: https://language.stanford.edu/programs/efs/languages/english-foreign-students/international-teachingcourse-assistant-screening. Enrollment in PHYSICS 294 is by permission. To get a permission number please complete the form: https://forms.gle/AQarpxz5XVJzVE8i7. If you have not heard from us by the beginning of class, please come to the first class session.
Terms: Aut, Win | Units: 1

PHYSICS 295: Learning & Teaching of Science (CTL 280, EDUC 280, ENGR 295, MED 270)

This course will provide students with a basic knowledge of the relevant research in cognitive psychology and science education and the ability to apply that knowledge to enhance their ability to learn and teach science, particularly at the undergraduate level. Course will involve readings, discussion, and application of the ideas through creation of learning activities. It is suitable for advanced undergraduates and graduate students with some science background.
Last offered: Spring 2023 | Units: 3

PHYSICS 301: Graduate Observational Astrophysics

Designed for physics graduate students but open to all graduate students with a calculus-based physics background and some laboratory and coding experience. Students make and analyze observations using the telescopes at the Stanford Student Observatory. Topics covered include navigating the night sky, the physics of stars and galaxies, telescope instrumentation and operation, imaging and spectroscopic techniques, quantitative error analysis, and effective scientific communication. The course concludes with an independent project where student teams propose and execute an observational astronomy project of their choosing, using techniques learned in class to gather and analyze their data, and presenting their findings in the forms of professional-style oral presentations and research papers. Enrollment by permission. To get a permission number please complete form: https://forms.gle/KDarBRcZWJZG3qr66 form. If you have not heard from us by the beginning of class, please come to the first class session.
Terms: Spr | Units: 3

PHYSICS 302: Department Colloquium

Required of graduate students. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable 15 times (up to 15 units total)
Instructors: ; Hayden, P. (PI)

PHYSICS 330: Quantum Field Theory I

Lorentz Invariance. S-Matrix. Quantization of scalar and Dirac fields. Feynman diagrams. Quantum electrodynamics. Elementary electrodynamic processes: Compton scattering; e+e- annihilation. Loop diagrams. Prerequisites: PHYSICS 130, PHYSICS 131, or equivalents AND a basic knowledge of Group Theory.
Terms: Aut | Units: 3
Instructors: ; Raghu, S. (PI)

PHYSICS 331: Quantum Field Theory II

Functional integral methods. Local gauge invariance and Yang-Mills fields. Asymptotic freedom. Spontaneous symmetry breaking and the Higgs mechanism. Unified models of weak and electromagnetic interactions. Prerequisite: PHYSICS 330.
Terms: Win | Units: 3
Instructors: ; Stanford, D. (PI)

PHYSICS 332: Quantum Field Theory III

Theory of renormalization. The renormalization group and applications to the theory of phase transitions. Renormalization of Yang-Mills theories. Applications of the renormalization group of quantum chromodynamics. Perturbation theory anomalies. Applications to particle phenomenology. Prerequisite: PHYSICS 331.
Terms: Spr | Units: 3

PHYSICS 351: Standard Model of Particle Physics

Symmetries, group theory, gauge invariance, Lagrangian of the Standard Model, flavor group, flavor-changing neutral currents, CKM quark mixing matrix, GIM mechanism, rare processes, neutrino masses, seesaw mechanism, QCD confinement and chiral symmetry breaking, instantons, strong CP problem, QCD axion. Prerequisite: PHYSICS 330.
Last offered: Spring 2023 | Units: 3

PHYSICS 352: Physics Beyond the Standard Model of Particle Physics

This course provides an overview of the Standard Model of Particle Physics, motivations for extending the Standard Model (including naturalness, the hierarchy, the cosmological constant, and strong CP problems), discussions on Technicolor and Composite Models, Grand Unified Theories and SU(5), exploration of the Supersymmetric Standard Model (including gauge coupling unification and lessons from LEP and the LHC), re-evaluation of naturalness, the multiverse, and the landscape of string theory, as well as topics such as split supersymmetry, string theory, large extra dimensions, the strong CP problem, and the QCD axion.
Terms: Spr | Units: 3
Instructors: ; Dimopoulos, S. (PI)

PHYSICS 360: Modern Astrophysics

Basic theory of production of radiation in stars, galaxies and diffuse interstellar and intergalactic media and and transfer of radiation throughout the universe. Magnetic fields, turbulence shocks and  particle acceleration and transport around magnetospheres of planets to clusters of galaxies. Application to  compact objects, pulsars and accretion in binary stars and super-massive black holes, supernova remnants, cosmic rays and active galactic nuclei  Prerequisite: PHYSICS 260 or equivalent.
Last offered: Autumn 2022 | Units: 3 | Repeatable for credit

PHYSICS 361: Cosmology and Extragalactic Astrophysics

Intended as a complement to Ph 362 and Ph 364.nGalaxies (including their nuclei), clusters, stars and backgrounds in the contemporary universe. Geometry, kinematics, dynamics, and physics of the universe at large. Evolution of the universe following the epoch of nucleosynthesis. Epochs of recombination, reionization and first galaxy formation. Fluid and kinetic description of the growth of structure with application to microwave background fluctuations and galaxy surveys. Gravitational lensing. The course will feature interleaved discussion of theory and observation. Undergraduate exposure to general relativity and cosmology at the level of Ph 262 and Ph 161 will be helpful but is not essential.
Terms: Win | Units: 3
Instructors: ; Blandford, R. (PI)

PHYSICS 362: The Early Universe

Intended to complement PHYSICS 361, this course will cover the earlier period in cosmology up to and including nucleosynthesis. The focus will be on high energy, early universe physics. This includes topics such as inflation and reheating including generation of density perturbations and primordial gravitational waves, baryogenesis mechanisms, out of equilibrium particle production processes in the early universe e.g. both thermal and non-thermal production mechanisms for dark matter candidates such as WIMPs and axions, and production of the light nuclei and neutrinos. Techniques covered include for example out of equilibrium statistical mechanics such as the Boltzmann equation, and dynamics of scalar fields in the expanding universe. Other possible topics if time permits may include cosmological phase transitions and objects such as monopoles and primordial black holes. We will use quantum field theory, although it will hopefully be accessible for those without much background in that area. Suggested prerequisites: general relativity at the level of PHYSICS 262, some knowledge of cosmology and in particular the basics of FRW cosmology as in PHYSICS 361 for example, and some knowledge of quantum field theory e.g. at the level of PHYSICS 331 as a corequisite.
Terms: Spr | Units: 3

PHYSICS 364: Gravitational Radiation, Black Holes and Neutron Stars

General relativistic theory of spinning black holes and neutron stars including accretion, jets and tidal capture. Direct and indirect observation of relativistic effects in active galactic nuclei and stellar sources. Linear theory of the generation and propagation of (non-primordial) gravitational radiation. Detection of gravitational waves by Michelson interferometers, pulsars and atom interferometers. Nonlinear emission by binary black holes. Nuclear equation of state and nucleosynthetic implications of neutron star binaries. Pre-requisite: Ph 262 or equivalent.
Last offered: Spring 2020 | Units: 3

PHYSICS 367: Special Topics in Astrophysics: Extreme Astrophysics

Modern astrophysics explores physical processes in remote environments that prescribe, apply, and explore fundamental processes under conditions that are far more extreme than those attainable in a terrestrial laboratory. These include the production and interaction of peta eV gamma rays, peta eV neutrinos, and zetta eV cosmic rays by black holes and the behavior of 100 giga Tesla magnetic field anchored by neutron stars. The connection between observations, experiments, and the underlying physics will be emphasized. This course is intended for graduate students but should be accessible to advanced undergraduates. An understanding of basic general relativity and introductory quantum electrodynamics will be helpful but is not essential.
Terms: Spr | Units: 3 | Repeatable 5 times (up to 15 units total)
Instructors: ; Blandford, R. (PI)

PHYSICS 372: Condensed Matter Theory I

Fermi liquid theory, many-body perturbation theory, response function, functional integrals, interaction of electrons with impurities. Prerequisite: APPPHYS 273 or equivalent.
Last offered: Spring 2023 | Units: 3

PHYSICS 373: Condensed Matter Theory II

Superfluidity and superconductivity. Quantum magnetism. Prerequisite: PHYSICS 372.
Terms: Spr | Units: 3
Instructors: ; Qi, X. (PI)

PHYSICS 450: Advanced Theoretical Physics I: Fundamentals of Cosmic Acceleration

This course will examine the physics of the accelerated expansion of the early and late universe. Classically, this leads to horizons beyond which we cannot see. Quantum mechanically the cosmic horizon is responsible for the seeds of structure in the observed universe, whose details are sensitive to quantum gravity. It also represents vast numbers of microstates according to holographic calculations and the mathematical structure of string theory. This course will introduce relevant notions from observation, quantum field theory, general relativity, string theory, and other tools such as low-dimensional models, with the aim of developing a broad understanding of the phenomenon as currently understood along with an introduction to open research problems.
Terms: Aut | Units: 3 | Repeatable 7 times (up to 21 units total)
Instructors: ; Silverstein, E. (PI)

PHYSICS 451: Advanced Theoretical Physics II: Quantum Information Theory, Complexity, Gravity and Black Holes

This course will cover the developing intersection between quantum information theory and the quantum theory of gravity. We will focus on the central roles of entanglement and computational complexity in black hole physics. Prerequisites: Basic knowledge of quantum mechanics, quantum field theory, and general relativity.
Last offered: Autumn 2018 | Units: 3 | Repeatable for credit

PHYSICS 452: Inflationary Cosmology

This course describes the origin and the present status of inflationary cosmology. The main topics include: The Big Bang theory and the theory of cosmological phase transitions. Formation of domain walls, cosmic strings, and monopolies. Problems of the Big Bang theory, and solving these problems in inflationary cosmology. Main conceptual steps: Starobinsky model, old inflation, new inflation, chaotic inflation, eternal inflation. Reheating of the universe after inflation. Inflationary perturbations and the large-scale structure formation. Inflationary gravitational waves. Popular inflationary models such as hybrid inflation, natural inflation, Higgs inflation, and alpha-attractors. Testing inflationary models. Theory of tunneling and stochastic approach to inflation. The problem of initial conditions. Inflation in supergravity and string theory. Wave function of the universe, quantum cosmology, multiverse, and string theory landscape. Suggested prerequisites: general relativity at the level of PHYSICS 262 and some knowledge of quantum field theory at the level of PHYSICS 331.
Terms: Spr | Units: 3
Instructors: ; Linde, A. (PI)

PHYSICS 455: Introductory Seminar on Recent Developments in Theoretical Physics

This seminar is for first-year graduate students interested in theoretical physics. It is driven by introductory-level student talks and focuses on recent foundational developments across the field. Typical areas of interest include cosmology, particle physics, string theory, quantum gravity, and condensed matter.
Last offered: Winter 2021 | Units: 1-3 | Repeatable 3 times (up to 3 units total)

PHYSICS 470: Topics in Modern Condensed Matter Theory I: Many Body Quantum Dynamics

Many body quantum systems can display rich dynamical phenomena far from thermal equilibrium. Understanding the non-equilibrium dynamics of quantum matter represents an exciting research frontier at the interface of condensed matter and AMO physics, high energy theory and quantum information. This is particularly topical in light of experimental advances in building quantum simulators and intermediate-scale quantum computers, which naturally operate in far-from-equilibrium regimes. This course is intended to serve as an introduction to this active research area, assuming only a knowledge of quantum mechanics and statistical physics. Topics covered include: quantum thermalization, quantum chaos, many-body localization, quantum entanglement and its dynamics, Floquet theory and time crystals, quantum circuits, quantum simulation, and tensor network methods. Prerequisites: PHYSICS 113, PHYSICS 130, PHYSICS 131, PHYSICS 170, and PHYSICS 171.
Terms: Spr | Units: 3 | Repeatable for credit

PHYSICS 471: Topics in Modern Condensed Matter Theory II: Open Problems in the theory of metals & superconductor

We will begin by reviewing a modern perspective on the theory of conventional (BCS s-wave) and unconventional (e.g. d-wave) superconductors. We will then discuss a variety of issues that are of current interest, but which are either incompletely understood or entirely open problems in the field. Depending upon the interests of the class and the whims of the instructor, topics to be covered may include: quantum superconductor to insulator and superconductor to metal transitions, emergence of superconductivity from a non-Fermi liquid normal state, exotic superconducting phases of matter, interplay between superconductivity and other broken symmetry states (issues of ¿intertwined orders¿), and superconductivity in paradigmatic models of highly correlated electron systems, including problems in which there is an interplay between strong electron-electron and electron-phonon interactions. We will also touch on theoretical ideas - all of them currently still being explored and hence controversial - concerning theories of unconventional metallic states - i.e. metallic states that cannot be well described in the context of a theory of weakly interacting quasiparticles. While the subject matter of this course is motivated by ongoing experimental studies in a variety of quantum materials and devices, the principle focus of the class will be on a coherent understanding of what is known and on crisply identifying what is not known.
Last offered: Winter 2021 | Units: 3 | Repeatable for credit

PHYSICS 472: Quantum Information Theory and Many-Body Physics

This course will discuss various research topics related to quantum information theory and its application in many-body systems. The course contains three main parts. In the first part, we will discuss the fundamentals of classical and quantum information theory, including concepts such as quantum channels and quantum measurements, physical quantities such as quantum relative entropy, and mutual information. We will also discuss quantum error correction and quantum teleportation. The second part will be an overview of entanglement properties in various many-body systems, such as free fermions and free bosons, stabilizer states, conformal field theory, random states, etc. In the third part, I will give a brief overview of the relation of quantum information with spacetime and quantum gravity.
Terms: Aut | Units: 3 | Repeatable 6 times (up to 18 units total)
Instructors: ; Qi, X. (PI)

PHYSICS 490: Research

Open only to Physics graduate students, with consent of instructor. Work is in experimental or theoretical problems in research, as distinguished from independent study of a non-research character in 190 and 293.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit
Instructors: ; Abel, T. (PI); Ahmed, Z. (PI); Akerib, D. (PI); Allen, S. (PI); Altman, R. (PI); Baccus, S. (PI); Baer, T. (PI); Batzoglou, S. (PI); Beasley, M. (PI); Bejerano, G. (PI); Bhattacharya, J. (PI); Blandford, R. (PI); Block, S. (PI); Bloom, E. (PI); Boahen, K. (PI); Boettcher, C. (PI); Boneh, D. (PI); Bouland, A. (PI); Boxer, S. (PI); Breidenbach, M. (PI); Brodsky, S. (PI); Bryant, Z. (PI); Bucksbaum, P. (PI); Burchat, P. (PI); Burke, D. (PI); Bustamante, C. (PI); Byer, R. (PI); Cabrera, B. (PI); Chao, A. (PI); Chatterjee, S. (PI); Chichilnisky, E. (PI); Chiu, W. (PI); Choi, J. (PI); Chu, S. (PI); Church, S. (PI); Clark, S. (PI); Dai, H. (PI); Das, R. (PI); Devakul, T. (PI); Devereaux, T. (PI); Digonnet, M. (PI); Dimopoulos, S. (PI); Dixon, L. (PI); Doniach, S. (PI); Drell, P. (PI); Dror, R. (PI); Druckmann, S. (PI); Dunne, M. (PI); Edwards, M. (PI); Ermon, S. (PI); Fan, S. (PI); Fejer, M. (PI); Feldman, B. (PI); Fetter, A. (PI); Fisher, I. (PI); Fox, J. (PI); Friedland, A. (PI); Gaffney, K. (PI); Ganguli, S. (PI); Glenzer, S. (PI); Glover, G. (PI); Goldhaber-Gordon, D. (PI); Good, B. (PI); Gorinevsky, D. (PI); Graham, P. (PI); Gratta, G. (PI); Graves, E. (PI); Harbury, P. (PI); Haroush, K. (PI); Harris, J. (PI); Hartnoll, S. (PI); Hastings, J. (PI); Hayden, P. (PI); Heinz, T. (PI); Hewett, J. (PI); Himel, T. (PI); Hoeksema, J. (PI); Hogan, J. (PI); Hollberg, L. (PI); Holmes, S. (PI); Huang, P. (PI); Huang, Z. (PI); Huberman, B. (PI); Hwang, H. (PI); Inan, U. (PI); Irwin, K. (PI); Jaros, J. (PI); Jones, B. (PI); Jornada, F. (PI); Kachru, S. (PI); Kahn, S. (PI); Kallosh, R. (PI); Kamae, T. (PI); Kapitulnik, A. (PI); Karkare, K. (PI); Kasevich, M. (PI); Khemani, V. (PI); Kivelson, S. (PI); Kling, M. (PI); Knight, R. (PI); Kosovichev, A. (PI); Kundaje, A. (PI); Kuo, C. (PI); Kurinsky, N. (PI); Laughlin, R. (PI); Leane, R. (PI); Lee, Y. (PI); Lev, B. (PI); Levin, C. (PI); Levitt, M. (PI); Linde, A. (PI); Lipa, J. (PI); Luth, V. (PI); Mabuchi, H. (PI); Madejski, G. (PI); Manoharan, H. (PI); Mao, W. (PI); Marinelli, A. (PI); Markland, T. (PI); Melosh, N. (PI); Michelson, P. (PI); Mistlberger, B. (PI); Moerner, W. (PI); Moler, K. (PI); Monzani, M. (PI); Nelson, T. (PI); Nishi, Y. (PI); Ozgur, A. (PI); Palanker, D. (PI); Pande, V. (PI); Papanicolaou, G. (PI); Partridge, R. (PI); Pelc, N. (PI); Peskin, M. (PI); Petrosian, V. (PI); Pianetta, P. (PI); Poon, A. (PI); Prinz, F. (PI); Qi, X. (PI); Quake, S. (PI); Raghu, S. (PI); Raubenheimer, T. (PI); Reis, D. (PI); Romani, R. (PI); Roodman, A. (PI); Rotskoff, G. (PI); Rowson, P. (PI); Rubinstein, A. (PI); Ruth, R. (PI); Safavi-Naeini, A. (PI); Schaan, E. (PI); Scherrer, P. (PI); Schindler, R. (PI); Schleier-Smith, M. (PI); Schnitzer, M. (PI); Schroeder, D. (PI); Schuster, D. (PI); Schuster, P. (PI); Schwartzman, A. (PI); Senatore, L. (PI); Shen, Z. (PI); Shenker, S. (PI); Shutt, T. (PI); Sidford, A. (PI); Silverstein, E. (PI); Simon, J. (PI); Smith, T. (PI); Spakowitz, A. (PI); Spudich, J. (PI); Stanford, D. (PI); Stohr, J. (PI); Su, D. (PI); Susskind, L. (PI); Suzuki, Y. (PI); Tanaka, H. (PI); Tantawi, S. (PI); Tartakovsky, D. (PI); Thomas, S. (PI); Tompkins, L. (PI); Toro, N. (PI); Vasy, A. (PI); Vernieri, C. (PI); Vuckovic, J. (PI); Vuletic, V. (PI); Wacker, J. (PI); Wagoner, R. (PI); Wechsler, R. (PI); Wein, L. (PI); Wieman, C. (PI); Wong, H. (PI); Wootters, M. (PI); Wu, W. (PI); Yamamoto, Y. (PI); Yamins, D. (PI); Au, J. (GP); Frank, D. (GP)

PHYSICS 492: Topological Quantum Computation

This course will be an introduction to topological quantum computation (TQC), which has recently emerged as an exciting approach to constructing fault-tolerant quantum computers. We start with a review of some basics of quantum computing, 2D topological phases of matter, Abelian/non-Abelian anyons, etc. Then we introduce the concept of TQC and study some examples such as the toric/surface code and Levin-Wen string-net model. We continue to talk about the mathematical theory of anyons including modular tensor categories, braid groups, 6j-symbols, Pentagon Equations. We study the issue of universality for different systems. Lastly, we show the equivalence of TQC with standard circuit model. Additional topics include complexity classes, Jones polynomials, topological field theories, etc. Prerequisite: Basic knowledge of quantum mechanics and condensed matter physics. Some knowledge of category theory and representation theory is useful but is not required. The course will run the first five weeks.
Last offered: Spring 2018 | Units: 2

PHYSICS 801: TGR Project

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit
Instructors: ; Burke, D. (PI)

PHYSICS 802: TGR Dissertation

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit
Instructors: ; Abel, T. (PI); Akerib, D. (PI); Allen, S. (PI); Baer, T. (PI); Beasley, M. (PI); Bhattacharya, J. (PI); Blandford, R. (PI); Block, S. (PI); Bloom, E. (PI); Boahen, K. (PI); Breidenbach, M. (PI); Brodsky, S. (PI); Brongersma, M. (PI); Bryant, Z. (PI); Bucksbaum, P. (PI); Burchat, P. (PI); Burke, D. (PI); Bustamante, C. (PI); Byer, R. (PI); Cabrera, B. (PI); Chao, A. (PI); Chichilnisky, E. (PI); Chu, S. (PI); Church, S. (PI); Clark, S. (PI); Dai, H. (PI); Devakul, T. (PI); Devereaux, T. (PI); Digonnet, M. (PI); Dimopoulos, S. (PI); Dixon, L. (PI); Doniach, S. (PI); Drell, P. (PI); Druckmann, S. (PI); Dunham, E. (PI); Dunne, M. (PI); Fan, S. (PI); Feldman, B. (PI); Fisher, I. (PI); Funk, S. (PI); Gaffney, K. (PI); Ganguli, S. (PI); Glenzer, S. (PI); Glover, G. (PI); Goldhaber-Gordon, D. (PI); Gorinevsky, D. (PI); Graham, P. (PI); Gratta, G. (PI); Graves, E. (PI); Grill-Spector, K. (PI); Harris, J. (PI); Hartnoll, S. (PI); Hastings, J. (PI); Hayden, P. (PI); Hewett, J. (PI); Hogan, J. (PI); Hollberg, L. (PI); Huang, Z. (PI); Hwang, H. (PI); Inan, U. (PI); Irwin, K. (PI); Jaros, J. (PI); Jones, B. (PI); Kachru, S. (PI); Kahn, S. (PI); Kallosh, R. (PI); Kamae, T. (PI); Kapitulnik, A. (PI); Kasevich, M. (PI); Khemani, V. (PI); Kivelson, S. (PI); Kundaje, A. (PI); Kuo, C. (PI); Laughlin, R. (PI); Lee, Y. (PI); Lev, B. (PI); Levitt, M. (PI); Linde, A. (PI); Luth, V. (PI); Mabuchi, H. (PI); Macintosh, B. (PI); Madejski, G. (PI); Manoharan, H. (PI); Mao, W. (PI); Marinelli, A. (PI); Michelson, P. (PI); Moerner, W. (PI); Moler, K. (PI); Monzani, M. (PI); Palanker, D. (PI); Peskin, M. (PI); Petrosian, V. (PI); Pianetta, P. (PI); Prinz, F. (PI); Qi, X. (PI); Quake, S. (PI); Raghu, S. (PI); Raubenheimer, T. (PI); Romani, R. (PI); Roodman, A. (PI); Ruth, R. (PI); Safavi-Naeini, A. (PI); Scherrer, P. (PI); Schindler, R. (PI); Schleier-Smith, M. (PI); Schnitzer, M. (PI); Schuster, P. (PI); Schwartzman, A. (PI); Senatore, L. (PI); Shen, Z. (PI); Shenker, S. (PI); Shutt, T. (PI); Silverstein, E. (PI); Simon, J. (PI); Smith, T. (PI); Spakowitz, A. (PI); Spudich, J. (PI); Stanford, D. (PI); Stohr, J. (PI); Su, D. (PI); Susskind, L. (PI); Suzuki, Y. (PI); Tanaka, H. (PI); Tompkins, L. (PI); Toro, N. (PI); Vasy, A. (PI); Vuckovic, J. (PI); Vuletic, V. (PI); Wacker, J. (PI); Wechsler, R. (PI); Wieman, C. (PI); Wong, H. (PI); Yamamoto, Y. (PI); Yamins, D. (PI); Au, J. (GP)
© Stanford University | Terms of Use | Copyright Complaints