Print Settings
 

ME 1: Introduction to Mechanical Engineering

This course is intended to be the starting point for Mechanical Engineering majors. It will cover the concepts, engineering methods, and common tools used by mechanical engineers while introducing the students to a few interesting devices. We will discuss how each device was conceived, design challenges that arose, application of analytical tools to the design, and production methods. Main class sections will include lectures, demonstrations, and in-class group exercises. Lab sections will develop specific skills in freehand sketching and computational modeling of engineering systems. Prerequisites: Physics: Mechanics, and first quarter Calculus.
Terms: Aut, Spr | Units: 3 | UG Reqs: WAY-AQR

ME 30: Engineering Thermodynamics

The basic principles of thermodynamics are introduced in this course. Concepts of energy and entropy from elementary considerations of the microscopic nature of matter are discussed. The principles are applied in thermodynamic analyses directed towards understanding the performances of engineering systems. Methods and problems cover socially responsible economic generation and utilization of energy in central power generation plants, solar systems, refrigeration devices, and automobile, jet and gas-turbine engines.
Terms: Aut, Win, Spr | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA

ME 70: Introductory Fluids Engineering

Elements of fluid mechanics as applied to engineering problems. Equations of motion for incompressible flow. Hydrostatics. Control volume laws for mass, momentum, and energy. Bernoulli equation. Differential equations of fluid flow. Euler equations. Dimensional analysis and similarity. Internal flows. Introductory external boundary layer flows. Introductory lift and drag. ENGR14 and ME30 required.
Terms: Win, Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci

ME 102: Foundations of Product Realization

Students develop the language and toolset to transform design concepts into tangible models/prototypes that cultivate the emergence of mechanical aptitude. Visual communication tools such as sketching, orthographic projection, and 2D/3D design software are introduced in the context of design and prototyping assignments. Instruction and practice with hand, powered, and digital prototyping tools in the Product Realization Lab support students implementation and iteration of physical project work. Project documentation, reflection, and in-class presentations are opportunities for students to find their design voice and practice sharing it with others. Prerequisite: ME 1 or ME 101 or consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 3

ME 103: Product Realization: Design and Making

ME103 is designed for sophomores or juniors in mechanical engineering or product design. During the course students will develop a point of view around a product or object of their own design that is meaningful to them in some way. Students will evolve their ideas through a series of prototypes of increasing fidelity ¿ storyboards, sketches, CAD models, rough prototypes, 3D printed models, etc. The final project will be a high-fidelity product or object made with the PRL's manufacturing resources, giving students a sound foundation in fabrication processes, design guidelines, tolerancing, and material choices. The student's body of work will be presented in a large public setting, Meet the Makers, through a professional grade portfolio that shares and reflects on the student's product realization adventure. ME103 assumes familiarity with product realization fundamentals, CAD and 3D printing. Prerequisite for ME103: ME102.
Terms: Aut, Win, Spr | Units: 4

ME 104: Mechanical Systems Design

How to design mechanical systems through iterative application of intuition, brainstorming, analysis, computation and prototype testing. Design of custom mechanical components, selection of common machine elements, and selection of electric motors and transmission elements to meet performance, efficiency and reliability goals. Emphasis on high-performance systems. Independent and team-based design projects. Prerequisites: PHYSICS 41; ENGR 14; ME 80; ME 102; ME 103 or 203. Prerequisites strictly enforced. Must have PRL pass. Must attend lecture. Recommended: ENGR 15; CS 106A; ME 128 or ME 318.
Terms: Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 108: Making and Breaking Things

This course introduces students to maker culture and the hands-on activity of assembling and dissecting modern products. Students will gain experience and skills in opening and tinkering with devices, repurposing them to serve a new and different purpose, and working with basic electronics including sensors, actuators, and microcontrollers such as Arduino. Activities will vary each quarter, ranging from hacking appliances, to LED sculptures, textile sensors, paper robots, and more. Guest speakers will lead some activities and introduce students to broader perspectives on making.
Terms: Spr | Units: 1

ME 123: Computational Engineering

The design of wind turbines, biomedical devices, jet engines, electronic units, and almost every other engineering system, require the analysis of its flow and thermal characteristics to ensure optimal performance and safety. The continuing growth of computer power and the emergence of general-purpose engineering software has fostered the use of computational analysis as a complement to experimental testing. Virtual prototyping is a staple of modern engineering practice. This course is an introduction to Computational Engineering using commercial analysis codes, covering both theory and applications. Assuming limited knowledge of computational methods, the course starts with introductory training on the software, using a series of lectures and hands-on tutorials. We utilize the ANSYS software suite, which is used across a variety of engineering fields. Herein, the emphasis is on geometry modeling, mesh generation, solution strategy and post-processing for diverse applications. Using classical flow/thermal problems, the course develops the essential concepts of Verification and Validation for engineering simulations, providing the basis for assessing the accuracy of the results. Advanced concepts such as the use of turbulence models, user programming and automation for design are also introduced. The course is concluded by a project, in which the students apply the software to solve a industry-inspired problem. Enrollment priority will be given to juniors and seniors who are using this course to meet their BSME program requirements.
Terms: Spr | Units: 4

ME 127: Design for Additive Manufacturing

Design for Additive Manufacturing (DfAM) combines the fields of Design for Manufacturability (DfM) and Additive Manufacturing (AM). ME127 will introduce the capabilities and limitations of various AM technologies and apply the principles of DfM in order to design models fit for printing. Students will use Computer Aided Design (CAD) software to create and analyze models and then print them using machines and resources in the Product Realization Lab. Topics include: design for rapid prototyping, material selection, post-processing and finishing, CAD simulation, algorithmic modeling, additive tooling and fixtures, and additive manufacturing at scale. Prerequisite: ME102 and ME80, or consent of instructor.
Terms: Win, Spr | Units: 3

ME 128: Computer-Aided Product Realization

Students will continue to build understanding of Product Realization processes and techniques concentrating on Computer Numerical Control (CNC) machines, materials, tools, and workholding. Students will gain an understanding of CNC in modern manufacturing and alternative methods and tools used in industry. Students will contribute to their professional portfolio by including projects done in class. Limited enrollment. Prerequisite: ME 103 and consent of instructor.
Terms: Aut, Win, Spr | Units: 3-4

ME 149: Mechanical Measurements

The Mechanical Measurement experiments course introduces undergraduates to modern experimental methods in solid mechanics, fluid mechanics, and thermal sciences. A key feature of several of the experiments will be the integration of solid mechanics, fluid mechanics, and heat transfer principles, so that students gain an appreciation for the interplay among these disciplines in real-world problems.
Terms: Spr | Units: 3

ME 203: Design and Manufacturing

ME203 is intended for any graduate student, from any field of study, who may want the opportunity to design and prototype a physical project of meaning to them. Undergraduate mechanical engineering and product design students should register for ME103. Students are asked to discover a product with meaning to them; develop a point of view which motivates a redesign of that product; manufacture a series of models, multiple candidates, including sketches, product use stories, rapid prototypes, CAD documents, manufacturing test models, and finally a customer ready prototype. Each student will physically create their product using Product Realization Lab resources, and also redesign their product for scaled manufacturing to develop a knowledge of manufacturing processes, design guidelines, materials choices, and the opportunities those processes provide. The student's body of work will be presented in a large public setting, Meet the Makers, through an inspirational portfolio which shares and reflects on their product realization adventure.
Terms: Aut, Win, Spr | Units: 4

ME 206B: Design for Extreme Affordability

Design for Extreme Affordability (fondly called Extreme) is a two-quarter course offered by the d.school through the School of Engineering and the Graduate School of Business. This multidisciplinary project-based experience creates an enabling environment in which students learn to design products and services that will change the lives of the world's poorest citizens. Students work directly with course partners on real world problems, the culmination of which is actual implementation and real impact. Topics include design thinking, product and service design, rapid prototype engineering and testing, business modelling, social entrepreneurship, team dynamics, impact measurement, operations planning and ethics. Possibility to travel overseas during spring break. Previous projects include d.light, Driptech, Earthenable, Embrace, the Lotus Pump, MiracleBrace, Noora Health and Sanku. Periodic design reviews; Final course presentation and expo; industry and adviser interaction. Limited enrollment via application. Must sign up for ME206A and ME206B. See extreme.stanford.edu. Cardinal Course certified by the Haas Center
Terms: Spr | Units: 4

ME 214: Designing for Accessibility (CS 377Q)

Designing for accessibility is a valuable and important skill in the UX community. As businesses are becomeing more aware of the needs and scope of people with some form of disability, the benefits of universal design, where designing for accessibility ends up benefiting everyone, are becoming more apparent. This class introduces fundamental Human Computer Interaction (HCI) concepts and skills in designing for accessibility through individual assignments. Student projects will identify an accessibility need, prototype a design solution, and conduct a user study with a person with a disability. This class focuses on the accessibility of UX with computers, mobile phones, VR, and has a design class prerequisite (e.g., CS147, ME115A).
Terms: Spr | Units: 3-4

ME 218C: Smart Product Design Practice

Lecture/lab. Third in the series on programmable electromechanical systems design. Topics: inter-processor communication, communication protocols, system design with multiple microprocessors, architecture and assembly language programming for the PIC microcontroller, controlling the embedded software tool chain, A/D and D/A techniques. Team project. Lab fee. Limited enrollment. Prerequisite: 218B.
Terms: Spr | Units: 4-5

ME 220: Introduction to Sensors

Sensors are widely used in scientific research and as an integral part of commercial products and automated systems. The basic principles for sensing displacement, force, pressure, acceleration, temperature, optical radiation, nuclear radiation, and other physical parameters. Performance, cost, and operating requirements of available sensors. Elementary electronic circuits which are typically used with sensors. Lecture demonstration of a representative sensor from each category elucidates operating principles and typical performance. Lab experiments with off-the-shelf devices. Recommended Pre-requisites or equivalent knowledge: Physics 43 electromagnetism, Physics 41 mechanics, Math 53 Taylor series approximation, 2nd order Ordinary Diff Eqns, ENGR40A/Engr40 or ME210, i.e. some exposure to building basic circuits
Terms: Spr | Units: 4

ME 225: Scaling Up

Scaling Up is intended for design and engineering-oriented students who anticipate or have an interest in launching products. Where the cousin of this class, ME219, is an overview of fabrication and factory systems, this course explores how to go from vision to reality, and from parts to products. We'll explore the systems that enable us to design and produce high-quality products, at scale, at reasonable prices, including quality systems, supply chains, and different ways of conveying intent to factories. Students will acquire a professional foundation in the business of manufacturing through readings, in-class discussion, and roughly one-a-week team projects.
Terms: Spr | Units: 3

ME 236: Tales to Design Cars By

Students learn to tell personal narratives and prototype connections between popular and historic media using the automobile. Explores the meaning and impact of personal and preserved car histories. Storytelling techniques serve to make sense of car experiences through engineering design principles and social learning, Replay memories, examine engagement and understand user interviews, to design for the mobility experience of the future. This course celebrates car fascination, and leads the student through finding and telling a car story through the REVS photographic archives, ethnographic research, interviews, and diverse individual and collaborative narrative methods-verbal, non-verbal, and film. Methods draw from socio-cognitive psychology design thinking, and fine art; applied to car storytelling. Course culminates in a final story presentation and showcase. Restricted to co-term and graduate students. Class Size limited to 16.
Terms: Spr | Units: 1-3 | Repeatable 2 times (up to 6 units total)
Instructors: ; Karanian, B. (PI)

ME 248: Silver Pendant Project

In ME248 a C/NC class, students design and create a silver pendant. Beginning with a basic introduction to design and CAD, students use a computer aided design tool to create a 3D model of their pendant design. Next, using machines and processes at the Product Realization Lab, students build a version of their part in a wax-like material. This part is then used in a lost-wax investment casting process to turn the printed part into a cast silver part. Finally, the students are introduced to a set of hand tools they will use to turn their cast silver part into a finished silver pendant. Students who take ME248 for 1 unit complete one pendant, and take 4 2 hour labs: wax part preparation lab, casting lab, and two finishing labs. Students who take ME248 for 2 units complete a second project beyond the initial pendant, and in addition to the 4 labs will do 3 additional 2 hour labs: a wax printing lab, a sprueing/gating lab and an investing lab. This course must be taken for 2 units to be eligible for Ways credit. Summer offering not eligible for Ways credit.
Terms: Spr, Sum | Units: 1-2 | UG Reqs: WAY-CE

ME 257: Gas-Turbine Design Analysis (ME 357)

This course is concerned with the design analysis of gas-turbine engines. After reviewing essential concepts of thermo- and aerodynamics, we consider a turbofan gas-turbine engine that is representative of a business aircraft. We will first conduct a performance analysis to match the engine design with aircraft performance requirements. This is followed by examining individual engine components, including compressor, combustor, turbines, and nozzles, thereby increase the level of physical description. Aspects of modern engine concepts, environmental impacts, and advanced engine-analysis methods will be discussed. Students will have the opportunity to develop a simulation code to perform a basic design analysis of a turbofan engine. Course Prerequisites: ENGR 30, ME 70, ME 131B, CME 100
Terms: Spr | Units: 3
Instructors: ; Ihme, M. (PI); Akoush, B. (TA)

ME 286: Identification and Estimation in Engineering Design

The main idea for the course is to seek a deeper and more theoretical understanding of some practically useful techniques for modeling and estimation in engineering design. The class will draw from system identification, system modeling theory, statistics and data science disciplines in order to "let the data speak about the system." Prerequisites: ENGR205, EE263, AA212. We will not use any specific materials covered in these subjects, but we assume basic background knowledge of state space, transfer functions, frequency responses, probability, and linear algebra. Intermediate Proficiency in Matlab is preferred (but Python is OK).
Terms: Spr | Units: 3

ME 299A: Practical Training

For master's students. Educational opportunities in high technology research and development labs in industry. Students engage in internship work and integrate that work into their academic program. Following internship work, students complete a research report outlining work activity, problems investigated, key results, and follow-up projects they expect to perform. Meets the requirements for curricular practical training for students on F-1 visas. Student is responsible for arranging own internship/employment and faculty sponsorship. Register under faculty sponsor's section number. All paperwork must be completed by student and faculty sponsor, as the Student Services Office does not sponsor CPT. Students are allowed only two quarters of CPT per degree program. Course may be repeated twice.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 2 times (up to 2 units total)

ME 299B: Practical Training

For Ph.D. students. Educational opportunities in high technology research and development labs in industry. Students engage in internship work and integrate that work into their academic program. Following internship work, students complete a research report outlining work activity, problems investigated, key results, and follow-up projects they expect to perform. Meets the requirements for curricular practical training for students on F-1 visas. Student is responsible for arranging own internship/employment and faculty sponsorship. Register under faculty sponsor's section number. All paperwork must be completed by student and faculty sponsor, as the student services office does not sponsor CPT. Students are allowed only two quarters of CPT per degree program. Course may be repeated twice.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 2 times (up to 2 units total)

ME 300C: Introduction to Numerical Methods for Engineering (CME 206)

Numerical methods from a user's point of view. Lagrange interpolation, splines. Integration: trapezoid, Romberg, Gauss, adaptive quadrature; numerical solution of ordinary differential equations: explicit and implicit methods, multistep methods, Runge-Kutta and predictor-corrector methods, boundary value problems, eigenvalue problems; systems of differential equations, stiffness. Emphasis is on analysis of numerical methods for accuracy, stability, and convergence. Introduction to numerical solutions of partial differential equations; Von Neumann stability analysis; alternating direction implicit methods and nonlinear equations. Prerequisites: CME 200/ME 300A, CME 204/ME 300B.
Terms: Spr | Units: 3

ME 301: LaunchPad:Design and Launch your Product or Service (DESIGN 399)

This is an intense course in product design and development offered to graduate students only (no exceptions). In just ten weeks, we will apply principles of design thinking to the real-life challenge of imagining, prototyping, testing and iterating, building, pricing, marketing, distributing and selling your product or service. You will work hard on both sides of your brain. You will experience the joy of success and the (passing) pain of failure along the way. This course is an excellent chance to practice design thinking in a demanding, fast-paced, results-oriented group with support from faculty and industry leaders. This course may change your life. We will treat each team and idea as a real start-up, so the work will be intense. If you do not have a passionate and overwhelming urge to start a business or launch a product or service, this class will not be a fit. Refer to this website for up-to-date class and office hours information: https://www.launchpad.stanford.edu/
Terms: Spr | Units: 4
Instructors: ; Klebahn, P. (PI)

ME 310C: Global Engineering Design Thinking, Innovation, and Entrepreneurship

ME310BC is a two-quarter continuation of ME310 and typically requires ME310A as a prerequisite. In ME310B the focus is on detailed design and prototyping of novel components and systems, often re-framing the problem and identifying new user populations in light of new information. ME310C focuses on making the design credible from an engineering and business perspective. Teams perform user testing and explore pre-production manufacturing techniques to create their final prototypes. They present their solutions at the EXPE (http://expe.stanford.edu) and produce a report that documents not only the final solutions but also the alternatives considered. Final reports are archived in the Stanford Engineering Libraries: ME310 Project Based Engineering, Digital Collection.
Terms: Spr | Units: 4-5

ME 318: Computer-Aided Product Creation

Design course focusing on an integrated suite of computer tools: rapid prototyping, solid modeling, computer-aided machining, and computer numerical control manufacturing. Students choose, design, and manufacture individual products, emphasizing individual design process and computer design tools. Structured lab experiences build a basic CAD/CAM/CNC proficiency. Limited enrollment. Prerequisite: ME103 or equivalent and consent of instructor. ME 203 or consent of instructor.
Terms: Aut, Win, Spr | Units: 3-4

ME 323: Advanced Robotic Manipulation (CS 327A)

Advanced control methodologies and novel design techniques for complex human-like robotic and bio mechanical systems. Class covers the fundamentals in operational space dynamics and control, elastic planning, human motion synthesis. Topics include redundancy, inertial properties, haptics, simulation, robot cooperation, mobile manipulation, human-friendly robot design, humanoids and whole-body control. Additional topcs in emerging areas are presented by groups of students at the end-of-quarter mini-symposium. Prerequisites: 223A or equivalent.
Terms: Spr | Units: 3

ME 324: Precision Engineering

Concepts and tactics for the design of precision machines including flexures, kinematic design, actuators, sensors, vibration isolation, athermalization and metrology. Hands-on, project based class. Prerequisites ME 103, 203.
Terms: Spr | Units: 4
Instructors: ; Cutler, G. (PI); Diaz, A. (TA)

ME 325: Making Multiples: Injection Molding

Design course focusing on the process of injection molding as a prototyping and manufacturing tool. Coursework will include creating and evaluating initial design concepts, detailed part design, mold design, mold manufacturing, molding parts, and testing and evaluating the results. Students will work primarily on individually selected projects, using each project as a tool to continue developing and exercising individual design process. Lectures and field trips will provide students with context for their work in the Stanford Product Realization Lab. Prerequisite: ME318 or consent of instructors.
Terms: Aut, Win, Spr | Units: 3

ME 327: Design and Control of Haptic Systems

Study of the design and control of haptic systems, which provide touch feedback to human users interacting with virtual environments and teleoperated robots. Focus is on device modeling (kinematics and dynamics), synthesis and analysis of control systems, design and implementation, and human interaction with haptic systems. Coursework includes homework/laboratory assignments and a hands-on project. Directed toward undergraduate and graduate students in engineering and computer science. Prerequisites: dynamic systems, feedback controls, and MATLAB programming.
Terms: Spr | Units: 3

ME 329: Mechanical Analysis in Design

This project based course will cover the application of engineering analysis methods learned in the Mechanics and Finite Element series to real world problems involving the mechanical analysis of a proposed device or process. Students work in teams, and each team has the goal of solving a problem defined jointly with a sponsoring company or research group. Each team will be mentored by a faculty mentor and a mentor from the sponsoring organization. The students will gain experience in the formation of project teams; interdisciplinary communication skills; intellectual property; and project management. Course has limited enrollment.
Terms: Spr | Units: 3
Instructors: ; Lew, A. (PI); Patel, A. (TA)

ME 331B: Advanced Dynamics, Simulation & Control

Advanced methods and computational tools for the efficient formulation of equations of motion for multibody systems. Lagrange, D'Alembert, and Kane's methods for systems with constraints. Simple-to-complex modeling, analysis, and design (via vehicle dynamics). Quaternions. Advanced control techniques (e.g., feed-forward control). Team-based computational multibody lab project (e.g., vehicle dynamics, biomechanics, robotics, aerospace, alternative energy).
Terms: Spr | Units: 3

ME 334: Advanced Dynamics, Modeling and Analysis

Modeling and analysis of dynamical systems. This class will cover reference frames and coordinate systems, kinematics and constraints, mass distribution, virtual work, D'Alembert's principle, Lagrange, and Hamiltonian equations of motion. We will then consider select topics in controls and machine learning that utilize dynamics concepts. Students will learn and apply these concepts through homework and projects involving dynamic systems simulation. Prerequisites: ENGR15, CME 104, ENGR 154 or equivalent, Recommended: Linear Algebra ( EE 263, Math 113, CME 302 or equivalent), Partial Differential Equations ( Math 131P or equivalent).
Terms: Spr | Units: 3 | Repeatable 2 times (up to 6 units total)

ME 338: Continuum Mechanics

Introduction to vectors and tensors: kinematics, deformation, forces, and stress concept of continua; balance principles; aspects of objectivity; hyperelastic materials; thermodynamics of materials; variational principles.
Terms: Spr | Units: 3
Instructors: ; Zhao, R. (PI); Li, C. (TA)

ME 339: Introduction to parallel computing using MPI, openMP, and CUDA (CME 213)

This class will give hands-on experience with programming multicore processors, graphics processing units (GPU), and parallel computers. The focus will be on the message passing interface (MPI, parallel clusters) and the compute unified device architecture (CUDA, GPU). Topics will include multithreaded programs, GPU computing, computer cluster programming, C++ threads, OpenMP, CUDA, and MPI. Pre-requisites include C++, templates, debugging, UNIX, makefile, numerical algorithms (differential equations, linear algebra).
Terms: Spr | Units: 3

ME 340: Mechanics - Elasticity and Inelasticity

Introduction to the theories of elasticity, plasticity and fracture and their applications. Elasticity: Definition of stress, strain, and elastic energy; equilibrium and compatibility conditions; and formulation of boundary value problems. Stress function approach to solve 2D elasticity problems and Green¿s function approach in 3D. Applications to contact and crack. Plasticity: Yield surface, associative flow rule, strain hardening models, crystal plasticity models. Applications to plastic bending, torsion and pressure vessels. Fracture: Linear elastic fracture mechanics, J-integral, Dugdale-Barrenblatt crack model. Applications to brittle fracture and fatigue crack growth. Computer programming in Matlab is used to aid analytic derivation and numerical solutions.
Terms: Spr | Units: 3
Instructors: ; Cai, W. (PI); Mittal, D. (TA)

ME 350: Plasma Science and Technology Seminar (AA 296)

Guest speakers present research related to plasma science and engineering, ranging from fundamental plasma physics to industrial applications of plasma.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit (up to 99 units total)

ME 354: Experimental Methods in Fluid Mechanics

Experimental methods associated with the interfacing of laboratory instruments, experimental control, sampling strategies, data analysis, and introductory image processing. Instrumentation including point-wise anemometers and particle image tracking systems. Lab. Prerequisites: previous experience with computer programming and consent of instructor. Limited enrollment.
Terms: Spr | Units: 3
Instructors: ; McKeon, B. (PI); M, D. (TA)

ME 357: Gas-Turbine Design Analysis (ME 257)

This course is concerned with the design analysis of gas-turbine engines. After reviewing essential concepts of thermo- and aerodynamics, we consider a turbofan gas-turbine engine that is representative of a business aircraft. We will first conduct a performance analysis to match the engine design with aircraft performance requirements. This is followed by examining individual engine components, including compressor, combustor, turbines, and nozzles, thereby increase the level of physical description. Aspects of modern engine concepts, environmental impacts, and advanced engine-analysis methods will be discussed. Students will have the opportunity to develop a simulation code to perform a basic design analysis of a turbofan engine. Course Prerequisites: ENGR 30, ME 70, ME 131B, CME 100
Terms: Spr | Units: 3
Instructors: ; Ihme, M. (PI); Akoush, B. (TA)

ME 361: Turbulence

The nature of turbulent flows, statistical and spectral description of turbulence, coherent structures, spatial and temporal scales of turbulent flows. Averaging, two-point correlations and governing equations. Reynolds averaged equations and stresses. Free shear flows, turbulent jet, turbulent kinetic energy and kinetic energy dissipation, and kinetic energy budget. Kolmogorov's hypothesis and energy spectrum. Wall bounded flows, viscous scales, and law of the wall. Turbulence closure modeling for Reynolds averaged Navier Stokes equations. Direct and large eddy simulation of turbulent flows. Subgrid scale modeling. ME300B recommended.
Terms: Spr | Units: 3

ME 367: Optical Diagnostics and Spectroscopy Laboratory

Principles, procedures, and instrumentation associated with optical measurements in gases and plasmas. Absorption, fluorescence and emission, and light-scattering methods. Measurements of temperature, species concentration, and molecular properties. Lab. Enrollment limited to 16. Prerequisite: 362A or 364.
Terms: Spr | Units: 4

ME 368B: Biodesign Innovation: Concept Development and Implementation (BIOE 374B, MED 272B)

In this two-quarter course, multidisciplinary teams identify real unmet healthcare needs, invent health technologies to address them, and plan for their implementation into patient care. In second quarter, teams select a lead solution to advance through technical prototyping, strategies to address healthcare-specific requirements (IP, regulation, reimbursement), and business planning. Class sessions include faculty-led instruction, case studies, coaching sessions by experts, guest lecturers, and interactive team meetings. Enrollment is by application. Students are required to take both quarters of the course.
Terms: Spr | Units: 4 | Repeatable 2 times (up to 8 units total)

ME 374: Dynamics and Kinetics of Nanoparticles

Part 1: Thermodynamics, transport theories and properties, aerosol dynamics and reaction kinetics of nanoparticles in fluids. Nucleation, gas kinetic theory of nanoparticles, the Smoluchowski equation, gas-surface reactions, diffusion, thermophoresis, conservation equations and useful solutions. Part 2: Introduction to soot formation, nanoparticles in reacting flows, particle transport and kinetics in flames, atmospheric heterogenous reactions, and nanocatalysis.
Terms: Spr | Units: 3
Instructors: ; Wang, H. (PI)

ME 375: Wildfire Science

Wildfires are unplanned fires that burn in natural areas, such as forests, grasslands, shrublands, and other environments such as wildland-urban interface. While wildfires have been a natural part of our ecosystem, they can threaten livelihood and properties and impact environment and health. The severity and frequency of large wildfires in the United States have increased significantly over the past decades. This is largely attributed to human-caused climate change, increased human population in wildland-urban interface, and changes in fire-management policy. This surge in wildfire activity has resulted in substantial increase in burn area, pollutant and smoke emissions, and associated health effects. This course introduces students to the science of wildland fires, with a specific focus on the physics and quantitative understanding of wildfire behavior, environment impact, and fire management. Starting with the fundamentals of combustion and heat transfer, we will examine effects of wildfire behavior, fire propagation and the transition to extreme-fire events that are driven by atmospheric interaction. The second part of this course is concerned with the modeling and prediction of wildfires. To address deficiencies in the detailed understanding of fire-physics, we will examine recent developments of data-driven methods and their use for fuels characterization, fire detection, fire-risk assessment, and fire behavior predictions. As part of a series of homework assignments and projects, students will have the opportunity to analyze observational data, develop physical models, and examine different wildfire scenarios.
Terms: Spr | Units: 3

ME 378: Tell, Make, Engage: Action Stories for Entrepreneuring

Individual storytelling action and reflective observations gives the course an evolving framework of evaluative methods, from engineering design; socio cognitive psychology; and art that are formed and reformed by collaborative development within the class. Stories attached to an idea, a discovery or starting up something new, are considered through iterative narrative work, storytelling as rapid prototyping and small group challenges. This course will use qualitative and quantitative methods for story engagement, assessment, and class determined research projects with practice exercises, artifacts, short papers and presentations. Graduate and Co-Term students from all programs welcome. Class size limited to 21.
Terms: Aut, Win, Spr | Units: 1-3 | Repeatable for credit
Instructors: ; Karanian, B. (PI)

ME 381: Orthopaedic Bioengineering (BIOE 381)

Engineering approaches applied to the musculoskeletal system in the context of surgical and medical care. Fundamental anatomy and physiology. Material and structural characteristics of hard and soft connective tissues and organ systems, and the role of mechanics in normal development and pathogenesis. Engineering methods used in the evaluation and planning of orthopaedic procedures, surgery, and devices. Open to graduate students and undergraduate seniors.
Terms: Spr | Units: 3

ME 389: Biomechanical Research Symposium

Guest speakers present contemporary research on experimental and theoretical aspects of biomechanical engineering and bioengineering. May be repeated for credit.
Terms: Spr | Units: 1 | Repeatable for credit
Instructors: ; Marsden, A. (PI)

ME 390A: Thermofluids, Energy, and Propulsion Research Seminar

Review of work in a particular research program and presentations of other related work.
Terms: Aut, Spr | Units: 1 | Repeatable for credit (up to 99 units total)
Instructors: ; Wang, H. (PI); Zheng, X. (PI)

ME 392: Experimental Investigation of Engineering Problems

Graduate engineering students undertake experimental investigation under guidance of staff member. Previous work under 391 may be required to provide background for experimental program. Faculty sponsor required.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit

ME 393: Master's Directed Research

Directed research experience for MS students in mechanical engineering who are pursuing the Distinction in Research (DiR). The student is responsible for securing a faculty research advisor and will register under that advisor's section number. Students must provide confirmation of faculty research advisor's agreement to supervise DiR, at which time they will receive a permission code from ME Student Services allowing them to enroll. Course may be repeated for credit.
Terms: Win, Spr, Sum | Units: 1-10 | Repeatable for credit

ME 395: Seminar in Solid Mechanics

Required of Ph.D. candidates in solid mechanics. Guest speakers present research topics related to mechanics theory, computational methods, and applications in science and engineering. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit
Instructors: ; Zhao, R. (PI)

ME 397: Design Research Theory and Methodology Seminar

This is a participatory graduate seminar that offers graduate students hands-on support in developing their design research methodology skills, including study formation and analysis plan, quantitative and qualitative methods, lab and field experiment design, self-report data collection and analysis, and other skills necessary to do quality research. Students interested in honing their human-subject research skills are encouraged to attend. Students bring their own current and/or future projects to discuss and develop with fellow students and instructors.
Terms: Spr | Units: 1 | Repeatable for credit
Instructors: ; Ge, X. (PI); Sirkin, D. (PI)

ME 398: Ph.D. Research Rotation

Directed research experience for first-year Mechanical Engineering Ph.D. students with faculty sponsors. The student is responsible for arranging the faculty sponsor and registering under the faculty sponsor's section number. Course may be repeated up to four times in the first year. A different faculty sponsor must be selected each time.
Terms: Aut, Win, Spr, Sum | Units: 1-4 | Repeatable 4 times (up to 16 units total)

ME 457: Fluid Flow in Microdevices

Physico-chemical hydrodynamics. Creeping flow, electric double layers, and electrochemical transport such as Nernst-Planck equation; hydrodynamics of solutions of charged and uncharged particles. Device applications include microsystems that perform capillary electrophoresis, drug dispension, and hybridization assays. Emphasis is on bioanalytical applications where electrophoresis, electro-osmosis, and diffusion are important. Prerequisite: consent of instructor.
Terms: Spr | Units: 3
Instructors: ; Santiago, J. (PI)

ME 469: Computational Methods in Fluid Mechanics (CME 369)

The last two decades have seen the widespread use of Computational Fluid Dynamics (CFD) for analysis and design of thermal-fluids systems in a wide variety of engineering fields. Numerical methods used in CFD have reached a high degree of sophistication and accuracy. The objective of this course is to introduce 'classical' approaches and algorithms used for the numerical simulations of incompressible flows. In addition, some of the more recent developments are described, in particular as they pertain to unstructured meshes and parallel computers. An in-depth analysis of the procedures required to certify numerical codes and results will conclude the course.
Terms: Spr | Units: 3
Instructors: ; Domino, S. (PI)
© Stanford University | Terms of Use | Copyright Complaints