Print Settings
 

AA 107N: How to Shoot for the Moon (DESIGN 187N)

The new space industry has the potential to impact and sustain life on Earth and beyond. For example, emerging space technology can shape the way we design habitats, food, and spacecraft for low-Earth orbit or the Lunar surface, as well as the products we use here on Earth. However, this requires us to take a deeper look at the potential influence on humanity and pushes us to declare our life mission as a lens for what we engineer. The aim of this IntroSem is to help undergraduate students "shoot for the moon" and "declare their mission" via an integration of curriculum from aerospace engineering and human-centered design. In this 10-week course, students will engage with some of life's hardest questions: Who are you?; Why are you here (i.e., on Earth and at Stanford)?; What do you want?; and How will you get there (i.e., Mars or your dream job after Stanford)? In addition, students will pitch new space-related, human-centered technology to potential stakeholders. To give students exposure to actual careers in aerospace design and engineering, mentors from industry will be invited to engage with students throughout the course and provide feedback on design projects. Are you go for launch?
Terms: Spr | Units: 3

AA 136B: Spacecraft Design Laboratory

Space Capstone II. Continuation of AA136A. Students will work in teams to implement, test, and demonstrate their design of a spacecraft subsystem. Emphasis on manufacturing, system testing, and operations to complete a full design cycle. Prerequisite: AA136A or consent of instructor.
Terms: Spr | Units: 3
Instructors: ; Lee, N. (PI)

AA 146B: Aircraft Design Laboratory

Air Capstone II. Required for Aero/Astro majors. This capstone design class brings together the material from prior classes in a way that emphasizes the interactions between disciplines and demonstrates how some of the more theoretical topics are synthesized in practical design of an aircraft concept. The class will address a single problem developed by the faculty and staff. Students will spend two quarters designing a system that addresses the objectives and requirements posed at the beginning of the course sequence. They will work individually and in teams, focusing on some aspect of the problem but exposed to many different disciplines and challenges. The second quarter will focus on the demonstration of a physical system incorporating features of the design solution. This may be accomplished with a set of experiments or a flight demonstration involving data gathering and synthesis of work in a final report authored by the team.
Terms: Spr | Units: 3
Instructors: ; Alonso, J. (PI)

AA 149: Operation of Aerospace Systems

This course (intended primarily for AeroAstro undergraduate students) provides a connection with the products of aerospace design through the use of tours, guest speakers, flight simulation, and hands-on exposure to systems used by pilots and space mission operators. The class will meet in-person on the first day and for multiple tours at local facilities. For some of the days with guest speakers, we will meet via Zoom. We discuss real-world experiences with operators of spacecraft and launch vehicles, and we hear from pilots of manned and unmanned aircraft. Skills required to operate systems in the past, present, and future are addressed. Students will also develop an appreciation of the effects of human factors on aviation safety and the importance of space situational awareness. Anticipated tours include an air traffic control facility and a spacecraft operations center. Some class sessions will be off campus tours at local facilities; these will require some scheduling flexibility outside of normal class hours.
Terms: Spr | Units: 1
Instructors: ; Barrows, A. (PI)

AA 156: Introduction to Mechanics of Composite Materials

This course covers topics related to fiber reinforced composites focusing on the prediction of elastic properties and failure. Students will learn about the microstructure of fiber composites, how it influences material properties, and how the design of composite materials differs from isotropic materials like metals. Students will practice these topics through several hands-on design tasks. Pre-requisite: AA151
Terms: Spr | Units: 3
Instructors: ; Sakovsky, M. (PI)

AA 173: Flight Mechanics & Controls

Aircraft flight dynamics, stability, and their control system design; frame transformations, non-linear equations of motion for aircraft; linearization of longitudinal and lateral-directional dynamics; aircraft static longitudinal and lateral/directional stability and control; observability and controllability; PID feedback control; Prerequisites: E15, E105, AA100 and familiarity with MATLAB.
Terms: Spr | Units: 3
Instructors: ; Gao, G. (PI)

AA 179: Orbital Mechanics and Attitude Dynamics

In this class, you will learn how to find your way in space. You will learn coordinate systems and coordinate transformations, so you will know where you are and where you are going. We will study rotational dynamics, rigid body equations of motion, their solutions and spacecraft rotational stability, so if you want to do sightseeing, you will know which direction to look. We will proceed to Newton?s law of gravity and the solution two-body problem, so you will know how to get around places. We will also cover the basics of orbital perturbations, so if someone disturbs your journey, you will not get lost. Finally, we will cover orbital maneuvers, their planning and execution, so if you want to go to multiple places, you will know when to change course, how much time it will take to get to your destination and how much it would cost. In each lecture, we will start with theory, and then proceed with applications supported by numerical examples in Python/Jupyter notebooks. During this class, we will be accumulating numerical examples that can be used together to solve progressively more complex problems in orbital and attitude dynamics. Prerequisites: CS106A for Python; ENGR 15, (CME 100, CME 102) or (MATH 51, MATH 53); or equivalent classes with permission of the instructor. Recommended: AA 131; if you plan to take AA179 (focus elective), it is recommended to take it before AA131 (required).
Terms: Spr | Units: 3
Instructors: ; Ermakov, A. (PI)

AA 190: Directed Research and Writing in Aero/Astro

For undergraduates. Experimental or theoretical work under faculty direction, and emphasizing development of research and communication skills. Written report(s) and letter grade required; if this is not appropriate, enroll in 199. Consult faculty in area of interest for appropriate topics, involving one of the graduate research groups or other special projects. May be repeated for credit. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | Repeatable for credit

AA 191: Practical Training

For undergraduate students. Educational opportunities in high technology research and development labs in industry. Students engage in internship work and integrate that work into their academic program. Following internship work, students complete a research report outlining work activity, problems investigated, key results, and follow-up projects they expect to perform. Meets the requirements for curricular practical training for students on F-1 visas. Student is responsible for arranging own internship/employment and faculty sponsorship. Register under faculty sponsor's section number. All paperwork must be completed by student and faculty sponsor, as the Student Services Office does not sponsor CPT. Students are allowed only two quarters of CPT per degree program. Course may be repeated twice.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable 3 times (up to 3 units total)
Instructors: ; Farhat, C. (PI)

AA 201A: Fundamentals of Acoustics

Acoustic equations for a stationary homogeneous fluid; wave equation; plane, spherical, and cylindrical waves; harmonic (monochromatic) waves; simple sound radiators; reflection and transmission of sound at interfaces between different media; multipole analysis of sound radiation; Kirchoff integral representation; scattering and diffraction of sound; propagation through ducts (dispersion, attenuation, group velocity); sound in enclosed regions (reverberation, absorption, and dispersion); radiation from moving sources; propagation in the atmosphere and underwater. Prerequisite: first-year graduate standing in engineering, mathematics, sciences; or consent of instructor.
Terms: Spr | Units: 3
Instructors: ; Lele, S. (PI)

AA 203: Optimal and Learning-based Control

Optimal control solution techniques for systems with known and unknown dynamics. Dynamic programming, Hamilton-Jacobi reachability, and direct and indirect methods for trajectory optimization. Introduction to model predictive control. Model-based reinforcement learning, and connections between modern reinforcement learning in continuous spaces and fundamental optimal control ideas.
Terms: Spr | Units: 3
Instructors: ; Pavone, M. (PI)

AA 204: Spacecraft Electric Propulsion

The fundamentals of electric propulsion for spacecraft, which exists at the junction of traditional fluid dynamics, plasma physics, and aerospace engineering. The design and physics of electrothermal, electrostatic, and electromagnetic propulsion devices. Prerequisites: prior familiarity and experience with electromagnetism (Maxwell's equations, Ohm's law); fluid dynamics (fluid equations, choked flow, nozzles, Mach number); chemistry (stoichiometry, heat of formation, heat of reaction); and orbital dynamics (rocket equation, thrust, specific impulse, delta-v).
Terms: Spr | Units: 3
Instructors: ; Hara, K. (PI)

AA 222: Engineering Design Optimization (CS 361)

Design of engineering systems within a formal optimization framework. This course covers the mathematical and algorithmic fundamentals of optimization, including derivative and derivative-free approaches for both linear and non-linear problems, with an emphasis on multidisciplinary design optimization. Topics will also include quantitative methodologies for addressing various challenges, such as accommodating multiple objectives, automating differentiation, handling uncertainty in evaluations, selecting design points for experimentation, and principled methods for optimization when evaluations are expensive. Applications range from the design of aircraft to automated vehicles. Prerequisites: some familiarity with probability, programming, and multivariable calculus.
Terms: Spr | Units: 3-4
Instructors: ; Kochenderfer, M. (PI)

AA 241B: Aircraft Design: Synthesis and Analysis

The second part of the two-quarter graduate course on aircraft design, AA241B builds on students? initial design work in AA 241A, but focuses on propulsion system performance and integration, structures (loads and weight estimation), mission performance (e.g. range, climb, field lengths), environmental effects (noise, local emissions, climate impact), and economics. Each student evaluates a range of parameterized versions of their concept, then performs trade studies and numerical optimization to produce a final design. The optimized design and methodology from both quarters of AA241 are then summarized in a final presentation and report. Prerequisites: AA 241A and preferably some previous courses in the following fields: structures, propulsion, dynamics, and engineering optimization.
Terms: Spr | Units: 3
Instructors: ; Kroo, I. (PI)

AA 245: Stability of Structures

This course covers the fundamentals of buckling and stability of structures, using potential energy and direct equilibrium approaches. Structural stability theory has applications in civil, mechanical, and aerospace engineering. Topics include: buckling of columns; imperfection sensitivity; classification of instabilities into snap-through and bifurcations; elasto-plastic buckling; buckling of plates and shells; localization and wrinkling; post-buckling behavior. Pre-requisites: AA 151 or AA 240 or similar.
Terms: Spr | Units: 3
Instructors: ; Arya, M. (PI)

AA 251: Introduction to the Space Environment

The environment through which space probes and vehicles travel and orbit. Survey of physical phenomena in the sun, solar wind, magnetospheres, ionospheres, and upper atmospheres of objects in the solar system. Introduction to the physical processes governing space plasmas, solar-terrestrial interactions, and ionized and neutral media surrounding the Earth and other solar system bodies. Prerequisite: AA 244A.
Terms: Spr | Units: 3
Instructors: ; Elschot, S. (PI)

AA 252: Techniques of Failure Analysis

Introduction to the field of failure analysis, including fire and explosion analysis, large scale catastrophe projects, traffic accident reconstruction, aircraft accident investigation, human factors, biomechanics and accidents, design defect cases, materials failures and metallurgical procedures, and structural failures. Product liability, failure modes and effects analysis, failure prevention, engineering ethics, and the engineer as expert witness.
Terms: Spr | Units: 3
Instructors: ; Kemal, A. (PI)

AA 257: Structural Health Monitoring

Structural health monitoring (SHM) is an emerging technology that provides high-resolution real-time state-sensing, awareness, and self-diagnostic capabilities of structures in service enabled by different types of sensors. SHM is a technology that is designed to interface with the industrial internet of things (IIoT) environment (a) to extend the duration of the service life; (b) to increase the reliability; (c) to reduce the maintenance cost and operational cost. The course will provide in-depth knowledge of two basic damage detection methods for SHM, (a) active sensing and (b) passive sensing. This course will also discuss different kinds of smart materials and sensors, including piezoelectric materials as sensing and actuating elements to interrogate the structures. Advanced signal processing techniques and different types of diagnostics techniques will be discussed and applied to various damage scenarios for qualitative and quantitative measurements. The class will involve structural dynamics, wave propagation, signal processing, finite element methods, and study test cases. Prerequisite: 240 or consent of instructor.
Terms: Spr | Units: 3
Instructors: ; Chang, F. (PI)

AA 261: Building an Aerospace Startup from the Ground Up

Silicon Valley has experienced a dramatic increase in aerospace-focused, venture capital-backed companies over the last decade. This course will examine what drives success and failure in these ventures, with applicability to prospective founders, employees, investors, or those with a general interest in understanding how real companies operate on a day-to-day basis. The course will cover the entire life cycle of aerospace startups, from idea to product, first financing to exit. Half of the class sessions will be lectures focused on the nuts and bolts of building an aerospace startup. The other sessions will explore critical decision making of recent aerospace startups, through case studies. Often, the protagonists from the case studies will join the class to provide their thinking as they navigated these bet-the-company decisions. Grading will be determined by a combination of hands-on projects and class participation. The instructors are former aerospace entrepreneurs who have raised more than $100 million in capital, launched satellites and derived products from those satellites, and who successfully exited their venture which returned 10x to initial investors. Instructor Consent required to enroll.
Terms: Spr | Units: 3

AA 273: State Estimation and Filtering for Robotic Perception

Kalman filtering, recursive Bayesian filtering, and nonlinear filter architectures including the extended Kalman filter, particle filter, and unscented Kalman filter. Observer-based state estimation for linear and non-linear systems. Examples from aerospace, including state estimation for fixed-wing aircraft, rotorcraft, spacecraft, and planetary rovers, with applications to control, navigation, and autonomy.
Terms: Spr | Units: 3
Instructors: ; Schwager, M. (PI)

AA 279C: Spacecraft Attitude Determination and Control

Attitude representation and parametrization; unperturbed and perturbed attitude dynamics and stability; attitude sensors and actuators; linear and nonlinear attitude control; optimal attitude maneuvers; dynamics of flexible spacecraft and space tethers; invited lectures from industry. Prerequisites: AA 242A, ENGR 105, AA 279A, and familiarity with MatLab.
Terms: Spr | Units: 3
Instructors: ; D'Amico, S. (PI)

AA 283: Aircraft and Rocket Propulsion

Introduction to the design and performance of airbreathing and rocket engines. Topics: the physical parameters used to characterize propulsion system performance; gas dynamics of nozzles and inlets; cycle analysis of ramjets, turbojets, turbofans, and turboprops; component matching and the compressor map; introduction to liquid and solid propellant rockets; multistage rockets; hybrid rockets; thermodynamics of reacting gases. Prerequisites: undergraduate background in fluid mechanics and thermodynamics.
Terms: Spr | Units: 3
Instructors: ; Cantwell, B. (PI)

AA 289: Robotics and Autonomous Systems Seminar (CS 529)

Seminar talks by researchers and industry professionals on topics related to modern robotics and autonomous systems. Broadly, talks will cover robotic design, perception and navigation, planning and control, and learning for complex robotic systems. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit (up to 99 units total)

AA 290: Problems in Aero/Astro

(Undergraduates register for 190 or 199.) Experimental, theoretical, or computational investigation. Students may work in any field of special interest. This course is designed to develop students' understanding of what a research problem is and the skills needed to successfully approach and conduct research. Register in Axess for section belonging to your research supervisor once the faculty member agrees to supervise your independent study. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1-5 | Repeatable for credit

AA 291: Practical Training

Educational opportunities in high-technology research and development labs in aerospace and related industries. Internship integrated into a student's academic program. Research report outlining work activity, problems investigated, key results, and any follow-on projects. Meets the requirements for Curricular Practical Training for students on F-1 visas. Student is responsible for arranging own employment and should see department student services manager before enrolling. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

AA 296: Plasma Science and Technology Seminar (ME 350)

Guest speakers present research related to plasma science and engineering, ranging from fundamental plasma physics to industrial applications of plasma.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit (up to 99 units total)

AA 300: Engineer Thesis

Thesis for degree of Engineer. Students register for section belonging to their thesis adviser.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

AA 301: Ph.D. Dissertation

Prerequisite: completion of Ph.D qualifying exams. Students register for section belonging to their thesis adviser. (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
© Stanford University | Terms of Use | Copyright Complaints