Print Settings
 

ENGR 1: Want to Be an Engineer?

This course is designed for you if you are a new student who has a hypothesis that you want to be a scientist, mathematician, or engineer but don't yet know what you want to major in. As a scientist, you know that you need data to test your hypothesis. As a design thinker, you know that there is no way forward except to be exposed to different things and weigh the results. As a potential engineer, you know that you need lots of information to make a decision. Each week a panel of faculty from STEM majors in the School of Engineering, the School of Humanities & Sciences, and Stanford Earth will present with the goal of helping you discover if their field is right for you.
Last offered: Autumn 2022 | Units: 1

ENGR 2: Stanford Summer Engineering Academy

Offered in August prior to start of fall quarter for incoming first-year students participating in the Stanford Summer Engineering Academy (SSEA). This course is comprised of two parallel tracks: One focused on the development and practice of critical problem solving in Computer Science; a second focused on providing a strong foundation in Mathematics. Based on skills developed in both tracks, students also explore the breadth and depth of engineering disciplines from faculty across the School of Engineering. Available by application only.
Terms: Aut | Units: 2
Instructors: ; Reyes, K. (PI)

ENGR 2A: SSEA Seminar: Developing Your Leadership Toolkit

In this weekly seminar, SSEA students will learn practical leadership skills so they can successfully navigate academic and professional opportunities while at Stanford and achieve meaningful results. Mentorship and career exploration will also be delivered through an inspiring line up of guest speakers and interactive activities.
Terms: Aut | Units: 1
Instructors: ; Reyes, K. (PI)

ENGR 10: Introduction to Engineering Analysis

Integrated approach to the fundamental scientific principles that are the cornerstones of engineering analysis: conservation of mass, atomic species, charge, momentum, angular momentum, energy, production of entropy expressed in the form of balance equations on carefully defined systems, and incorporating simple physical models. Emphasis is on setting up analysis problems arising in engineering. Topics: simple analytical solutions, numerical solutions of linear algebraic equations, and laboratory experiences. Provides the foundation and tools for subsequent engineering courses. Prerequisite: AP Physics and AP Calculus or equivalent.
Terms: Sum | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR
Instructors: ; Cappelli, M. (PI)

ENGR 14: Intro to Solid Mechanics

Introduction to engineering analysis using the principles of engineering solid mechanics. Builds on the math and physical reasoning concepts in Physics 41 to develop skills in evaluation of engineered systems across a variety of fields. Foundational ideas for more advanced solid mechanics courses such as ME80 or CEE101A. Interactive lecture sessions focused on mathematical application of key concepts, with weekly complementary lab session on testing and designing systems that embody these concepts. Limited enrollment, subject to instructor approval. Pre-requisite: Physics 41. When signing up for this course make sure to sign up both for the lecture and for a Discussion Section.
Terms: Aut, Win, Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR

ENGR 15: Dynamics

The application of Newton's Laws to solve 2-D and 3-D static and dynamic problems, particle and rigid body dynamics, freebody diagrams, and equations of motion, with application to mechanical, biomechanical, and aerospace systems. Computer numerical solution and dynamic response. Prerequisites: Calculus (differentiation and integration) such as Math 19, 20; and ENGR 14 (statics and strength) or a mechanics course in physics such as PHYSICS 41.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

ENGR 20: Introduction to Chemical Engineering (CHEMENG 20)

Overview of chemical engineering through discussion and engineering analysis of physical and chemical processes. Topics: overall staged separations, material and energy balances, concepts of rate processes, energy and mass transport, and kinetics of chemical reactions. Applications of these concepts to areas of current technological importance: biotechnology, energy, production of chemicals, materials processing, and purification. Prerequisite: CHEM 31.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

ENGR 21: Engineering of Systems

A high-level look at techniques for analyzing and designing complex, multidisciplinary engineering systems, such as aircraft, spacecraft, automobiles, power plants, cellphones, robots, biomedical devices, and many others. The need for multi-level design, modeling and simulation approaches, computation-based design, and hardware and software-in-the-loop simulations will be demonstrated through a variety of examples and case studies. Several aspects of system engineering will be applied to the design of large-scale interacting systems and contrasted with subsystems such as hydraulic systems, electrical systems, and brake systems. The use of design-thinking, story-boarding, mockups, sensitivity analysis, simulation, team-based design, and the development of presentation skills will be fostered through several realistic examples in several fields of engineering.
Terms: Spr | Units: 3

ENGR 40A: Introductory Electronics

Instruction will be completed in the first seven weeks of the quarter. Students not majoring in Electrical Engineering may choose to take only ENGR 40A; Electrical Engineering majors should take both ENGR 40A and ENGR 40B. Overview of electronic circuits and applications. Electrical quantities and their measurement, including operation of the oscilloscope. Basic models of electronic components including resistors, capacitors, inductors, and operational amplifiers. Lab. Lab assignments. Enrollment limited to 300.
Terms: Sum | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

ENGR 40B: Introductory Electronics Part II

Instruction will be completed in the final three weeks of the quarter. Students should not enroll in ENGR 40B without having taken (or enrolling concurrently in) ENGR 40A. Project on digital hardware and software implementations of a robotic car. Lab. Lab assignments. Pre- or co-requisite: ENGR 40A. Enrollment limited to 300.
Last offered: Winter 2019 | Units: 2

ENGR 40M: An Intro to Making: What is EE

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.
Terms: Aut, Win, Sum | Units: 5 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

ENGR 42: Introduction to Electromagnetics and Its Applications (EE 42)

Electricity and magnetism and its essential role in modern electrical engineering devices and systems, such as sensors, displays, DVD players, and optical communication systems. The topics that will be covered include electrostatics, magnetostatics, Maxwell's equations, one-dimensional wave equation, electromagnetic waves, transmission lines, and one-dimensional resonators. Pre-requisites: none.
Terms: Spr, Sum | Units: 5 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

ENGR 50: Introduction to Materials Science, Nanotechnology Emphasis

The structure, bonding, and atomic arrangements in materials leading to their properties and applications. Topics include electronic and mechanical behavior, emphasizing nanotechnology, solid state devices, and advanced structural and composite materials.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

ENGR 50E: Introduction to Materials Science, Energy Emphasis

Materials structure, bonding and atomic arrangements leading to their properties and applications. Topics include electronic, thermal and mechanical behavior; emphasizing energy related materials and challenges.
Terms: Win, Sum | Units: 4 | UG Reqs: WAY-SMA
Instructors: ; Mannix, A. (PI); Peng, H. (TA)

ENGR 50M: Introduction to Materials Science, Biomaterials Emphasis

Topics include: the relationship between atomic structure and macroscopic properties of man-made and natural materials; mechanical and thermodynamic behavior of surgical implants including alloys, ceramics, and polymers; and materials selection for biotechnology applications such as contact lenses, artificial joints, and cardiovascular stents. No prerequisite.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

ENGR 55: Foundational Biology for Engineers (CHEMENG 55)

Biology, physics, and chemistry are the substrates for the modern engineer. Whether you are interested in developing the next generation of medicines or would like the next material or catalyst you design to be inspired by solutions found in Nature, this course will deepen your knowledge of the foundational concepts in biology and enrich your engineering skills. We will introduce the physical principles that underlie the construction and function of living cells, the fundamental building block of life. Emphasis will be on systems, logic, quantitation, and mechanisms of the molecular processes utilized by all life on Earth. This course has no prerequisites, but prior completion of CHEM 31 or equivalent is highly recommended.
Terms: Aut | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA

ENGR 60: Engineering Economics and Sustainability (CEE 146S)

Engineering Economics is a subset of the field of economics that draws upon the logic of economics, but adds that analytical power of mathematics and statistics. The concepts developed in this course are broadly applicable to many professional and personal decisions, including making purchasing decisions, deciding between project alternatives, evaluating different processes, and balancing environmental and social costs against economic costs. The concepts taught in this course will be increasingly valuable as students climb the carrier ladder in private industry, a non-governmental organization, a public agency, or in founding their own startup. Eventually, the ability to make informed decisions that are based in fundamental analysis of alternatives is a part of every career. As such, this course is recommended for engineering and non-engineering students alike. This course is taught exclusively online in every quarter it is offered. (Prerequisites: MATH 19 or 20 or approved equivalent.)
Terms: Aut, Spr, Sum | Units: 3 | UG Reqs: WAY-AQR

ENGR 62: Introduction to Optimization (MS&E 111, MS&E 211)

Formulation and computational analysis of linear, quadratic, and other convex optimization problems. Applications in machine learning, operations, marketing, finance, and economics. Prerequisite: CME 100 or MATH 51.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR

ENGR 65: Modern Physics for Engineers (EE 65)

This course introduces the core ideas of modern physics that enable applications ranging from solar energy and efficient lighting to the modern electronic and optical devices and nanotechnologies that sense, process, store, communicate and display all our information. Though the ideas have broad impact, the course is widely accessible to engineering and science students with only basic linear algebra and calculus through simple ordinary differential equations as mathematics background. Topics include the quantum mechanics of electrons and photons (Schr¿dinger's equation, atoms, electrons, energy levels and energy bands; absorption and emission of photons; quantum confinement in nanostructures), the statistical mechanics of particles (entropy, the Boltzmann factor, thermal distributions), the thermodynamics of light (thermal radiation, limits to light concentration, spontaneous and stimulated emission), and the physics of information (Maxwell's demon, reversibility, entropy and noise in physics and information theory). Pre-requisite: Physics 41. Pre- or co-requisite: Math 53 or CME 102.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, GER:DB-EngrAppSci, WAY-SMA

ENGR 76: Information Science and Engineering

What is information? How can we measure and efficiently represent it? How can we reliably communicate and store it over media prone to noise and errors? How can we make sound decisions based on partial and noisy information? This course introduces the basic notions required to address these questions, as well as the principles and techniques underlying the design of modern information, communication, and decision-making systems with relations to and applications in machine-learning, through genomics, to neuroscience. Students will get a hands-on appreciation of the concepts via projects in small groups, where they will develop their own systems for streaming of multi-media data under human-centric performance criteria. Prerequisite: CS 106A.
Terms: Spr | Units: 5 | UG Reqs: WAY-AQR, WAY-FR

ENGR 80: Introduction to Bioengineering (Engineering Living Matter) (BIOE 80)

Students completing BIOE 80 should have a working understanding for how to approach the systematic engineering of living systems to benefit all people and the planet. Our main goals are (1) to help students learn ways of thinking about engineering living matter and (2) to empower students to explore the broader ramifications of engineering life. Specific concepts and skills covered include but are not limited to: capacities of natural life on Earth; scope of the existing human-directed bioeconomy; deconstructing complicated problems; reaction & diffusion systems; microbial human anatomy; conceptualizing the engineering of biology; how atoms can be organized to make molecules; how to print DNA from scratch; programming genetic sensors, logic, & actuators; biology beyond molecules (photons, electrons, etc.); constraints limiting what life can do; and possible health challenges in 2030. And we explore questions like, how does what we want shape bioengineering, and who should choose and realize various competing bioengineering futures?
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-FR

ENGR 90: Environmental Science and Technology (CEE 70)

Introduction to environmental quality and the technical background necessary for understanding environmental issues, controlling environmental degradation, and preserving air and water quality. Material balance concepts for tracking substances in the environmental and engineering systems.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR

ENGR 100: Teaching Public Speaking

The theory and practice of teaching public speaking and presentation development. Lectures/discussions on developing an instructional plan, using audiovisual equipment for instruction, devising tutoring techniques, and teaching delivery, organization, audience analysis, visual aids, and unique speaking situations. Weekly practice speaking. Students serve as apprentice speech tutors. Those completing course may become paid speech instructors in the Technical Communications Program. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr | Units: 3
Instructors: ; Vassar, M. (PI)

ENGR 102W: Technical and Professional Communication (CEE 102W)

Effective communication skills will help you advance quickly. Learn the best technical and professional techniques in writing and speaking. Group workshops and individual conferences with instructors. Designed for undergraduates going into industry. Allowed to fulfill WIM for Atmosphere/Energy, Engineering Physics, and Environmental Systems Engineering majors only.
Terms: Spr | Units: 3
Instructors: ; Harrison, K. (PI)

ENGR 103: Public Speaking (ENGR 203)

Priority to Engineering students. Introduction to speaking activities, from impromptu talks to carefully rehearsed formal professional presentations. How to organize and write speeches, analyze audiences, create and use visual aids, combat nervousness, and deliver informative and persuasive speeches effectively. Weekly class practice, rehearsals in one-on-one tutorials, videotaped feedback. Limited enrollment.
Terms: Aut, Win, Spr | Units: 3
Instructors: ; Vassar, M. (PI)

ENGR 104B: Designing Your Life

This course applies the mindsets and innovation principles of design thinking to the "wicked problem" of designing your life and vocation. The course introduces design thinking processes through application: students practice awareness and empathy, define areas of life and work on which hey want to work, ideate about ways to move forward, try small prototypes, and test their assumptions. The course is highly interactive. The course will include brief readings, writing, reflections, and in-class exercises. Expect to practice ideation and prototyping methodologies, decision making practices and to participate in hands on activities in pairs, trios, and small groups. Also includes roleplaying, assigned conversations with off campus professionals, guest speakers, and individual mentoring and coaching. It will conclude with creation of 3 versions of the next 5 years and prototype ideas to begin making those futures a reality. Open to juniors, seniors and 5th year coterms, all majors. All enrolled and waitlisted students should attend class on day 1 for admission. Additional course information at http://www.designingyourlife.org.
Terms: Aut, Win, Spr | Units: 2

ENGR 104R: Designing Your Spiritual Life (ENGR 204R)

The Stanford Life Design Lab applies human centered design thinking to tackling the "wicked" problems of life and vocational wayfinding. Designing Your Spiritual Life will introduce the innovative problem-solving methodology of design thinking within the context of "life design for students with a spiritual focus," with two main objectives: 1. to serve as an affinity space for students who have a spiritual tradition that informs their life view, to approach the wicked questions of life with a structured framework that helps them to process the various challenges that are unique to their college and life experiences as a potential religious minority, and 2. to equip these students with practical ideas and tools with which they can proactively craft their post-undergraduate vocational and life experiences. This class includes seminar-style and small-group discussions, activities, personal written reflections, guest speakers, and individual mentoring/coaching. Designing Your Spiritual Life will be co-taught by Junaid Aziz from the Design Group, the Life Design Lab, and Dr. Amina Darwish from the Office of Religious and Spiritual Life, and will include guest speakers - chaplains, priests, and spiritual leaders from the Office for Religious and Spiritual Life.
Terms: Aut | Units: 2 | Repeatable 2 times (up to 4 units total)

ENGR 104S: Designing Your Stanford (EDUC 118S)

DYS uses a Design Thinking approach to help Freshmen and Sophomores learn practical tools and ideas to make the most of their Stanford experience. Topics include the purpose of college, major selection, educational and vocational wayfinding, and innovating college outcomes, explored through the design thinking process. This seminar class incorporates small group discussion, in-class activities, field exercises, personal reflection, and individual coaching. Expect ideation tools, storytelling practices, prototyping to discover more about yourself and possible paths forward. The course concludes with creation of multiple versions of what college might look like and how to make those ideas reality. All enrolled and waitlisted students should attend class on day 1 for admission. Additional course information at http://lifedesignlab.stanford.edu/dys.
Terms: Win, Spr | Units: 2

ENGR 105: Feedback Control Design

Design of linear feedback control systems for command-following error, stability, and dynamic response specifications. Root-locus and frequency response design techniques. Examples from a variety of fields. Some use of computer aided design with MATLAB. Prerequisites: Dynamics systems (EE 102B or ME 161), and ordinary differential equations (CME 102 or Math 53). This course will include synchronous teaching sessions, but will be recorded to allow asynchronous participation
Terms: Win, Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci

ENGR 108: Introduction to Matrix Methods

Formerly EE 103/CME 103. Introduction to applied linear algebra with emphasis on applications. Vectors, norm, and angle; linear independence and orthonormal sets; applications to document analysis. Clustering and the k-means algorithm. Matrices, left and right inverses, QR factorization. Least-squares and model fitting, regularization and cross-validation. Constrained and nonlinear least-squares. Applications include time-series prediction, tomography, optimal control, and portfolio optimization. Undergraduate students should enroll for 5 units, and graduate students should enroll for 3 units. Prerequisites:MATH 51 or CME 100, and basic knowledge of computing (CS 106A is more than enough, and can be taken concurrently). ENGR 108 and Math 104 cover complementary topics in applied linear algebra. The focus of ENGR 108 is on a few linear algebra concepts, and many applications; the focus of Math 104 is on algorithms and concepts.
Terms: Aut, Sum | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR

ENGR 110: Perspectives in Assistive Technology (ENGR 110) (ENGR 210)

Seminar and student project course. Explores the medical, social, ethical, and technical challenges surrounding the design, development, and use of technologies that improve the lives of people with disabilities and older adults. Guest lecturers include engineers, designers, researchers, entrepreneurs, clinicians, and assistive technology users. Special activities include field trips to local facilities, an assistive technology faire, and a film screening. Students from any discipline are welcome to enroll. 3 units for students (juniors, seniors, and graduate students preferred) who pursue a team-based assistive technology project with a community partner - enrollment is limited to 27. 1 unit for seminar attendance only (CR/NC) or individual project (letter grade). Projects can be continued as independent study in Spring Quarter. See course website at http://engr110.stanford.edu. Designated a Cardinal Course by the Haas Center for Public Service.
Terms: Win | Units: 1-3

ENGR 117: Expanding Engineering Limits: Culture, Diversity, and Equity (CSRE 117, CSRE 217, ENGR 217, FEMGEN 117, FEMGEN 217)

This course investigates how culture and diversity shape who becomes an engineer, what problems get solved, and the quality of designs, technology, and products. As a course community, we consider how cultural beliefs about race, ethnicity, gender, sexuality, abilities, socioeconomic status, and other intersectional aspects of identity interact with beliefs about engineering, influence diversity in the field, and affect equity in engineering education and practice. We also explore how engineering cultures and environments respond to and change with individual and institutional agency. The course involves weekly presentations by scholars and engineers, readings, short writing assignments, small-group discussion, and hands-on, student-driven projects. Students can enroll in the course for 1 unit (lectures only), or 3 units (lectures+discussion+project). For 1 unit, students should sign up for Section 1 and Credit/No Credit grading, and for 3 units students should sign up for Section 2 and either the C/NC or Grade option.
Last offered: Winter 2022 | Units: 3

ENGR 119: Community Engagement Preparation Seminar (ENGR 219)

This seminar is designed for engineering students who have already committed to an experiential learning program working directly with a community partner on a project of mutual benefit. This seminar is targeted at students participating in the Summer Service Learning Program offered through Stanford¿s Global Engineering Program.
Last offered: Spring 2019 | Units: 1

ENGR 120: Mass and Energy Transport in Porous Media (ENERGY 120)

Engineering topics in mass and energy transport in porous media relevant to energy systems. Mass, momentum and energy conservation equations in porous structures. Single phase and multiphase flow through porous media. Gas laws. Introduction to thermodynamics. Chemical, physical, and thermodynamic properties of liquids and gases in the subsurface.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-FR, WAY-SMA

ENGR 140A: Leadership of Technology Ventures

First of three-part sequence for students selected to the Mayfield Fellows Program. Focuses on management and leadership of purposeful technology-intensive startups. Learning outcomes include entrepreneurial leadership skills related to product and market strategy, venture financing, team recruiting and culture, and the challenges of managing growth and ethical decision-making. Other engineering faculty, founders, and venture capitalists participate as appropriate. Visit http://mfp.stanford.edu for more about this work/study program.
Terms: Spr | Units: 2-4

ENGR 140B: Leadership of Technology Ventures

Open to Mayfield Fellows only; taken during the summer internship at a technology startup. Students exchange experiences and continue the formal learning process. Activities journal. Credit given following quarter.
Terms: Aut | Units: 1-2

ENGR 140C: Leadership of Technology Ventures

Open to Mayfield Fellows only. Capstone to the 140 sequence. Students, faculty, employers, and venture capitalists share recent internship experiences and analytical frameworks. Students develop living case studies and integrative project reports.
Terms: Aut | Units: 3

ENGR 145: Technology Entrepreneurship (ENGR 145S)

How does the entrepreneurship process enable the creation and growth of high-impact enterprises? Why does entrepreneurial leadership matter even in a large organization or a non-profit venture? What are the differences between just an idea and true opportunity? How do entrepreneurs form teams and gather the resources necessary to create a successful startup? Mentor-guided projects focus on analyzing students' ideas, case studies allow for examining the nuances of innovation, research examines the entrepreneurial process, and expert guests allow for networking with Silicon Valley's world-class entrepreneurs and venture capitalists. For undergraduates of all majors with interest in startups the leverage breakthrough information, energy, medical and consumer technologies. No prerequisites. Limited Enrollment.
Terms: Win | Units: 4 | UG Reqs: GER:DB-SocSci, WAY-SI

ENGR 145S: Technology Entrepreneurship (ENGR 145)

How does the entrepreneurship process enable the creation and growth of high-impact enterprises? Why does entrepreneurial leadership matter even in a large organization or a non-profit venture? What are the differences between just an idea and true opportunity? How do entrepreneurs form teams and gather the resources necessary to create a successful startup? Mentor-guided projects focus on analyzing students' ideas, case studies allow for examining the nuances of innovation, research examines the entrepreneurial process, and expert guests allow for networking with Silicon Valley's world-class entrepreneurs and venture capitalists. For undergraduates of all majors with interest in startups the leverage breakthrough information, energy, medical and consumer technologies. No prerequisites. Limited Enrollment.
Terms: Sum | Units: 4 | UG Reqs: GER:DB-SocSci, WAY-SI

ENGR 148: Principled Entrepreneurial Decisions (ENGR 248)

Principled Entrepreneurial Decisions examines how leaders tackle significant inflection points that occur in high-growth entrepreneurial companies. Students learn how to develop principles as a powerful tool to face tough situations that they will encounter in their lives and their chosen career. Cases and guest speakers discuss not only the business rationale for the decisions taken but also how their principles affected those decisions. A capstone project provides frameworks for students to develop their own set of principles. The teaching team brings its wealth of experience in both entrepreneurship and VC investing to the class. Limited enrollment. Admission by application: https://forms.gle/VU36jjGwmsK54CsK9
Terms: Aut, Win | Units: 3 | UG Reqs: WAY-ER

ENGR 154: Vector Calculus for Engineers (CME 100)

Computation and visualization using MATLAB. Differential vector calculus: vector-valued functions, analytic geometry in space, functions of several variables, partial derivatives, gradient, linearization, unconstrained maxima and minima, Lagrange multipliers and applications to trajectory simulation, least squares, and numerical optimization. Introduction to linear algebra: matrix operations, systems of algebraic equations with applications to coordinate transformations and equilibrium problems. Integral vector calculus: multiple integrals in Cartesian, cylindrical, and spherical coordinates, line integrals, scalar potential, surface integrals, Green's, divergence, and Stokes' theorems. Numerous examples and applications drawn from classical mechanics, fluid dynamics and electromagnetism. Prerequisites: knowledge of single-variable calculus equivalent to the content of Math 19-21 (e.g., 5 on Calc BC, 4 on Calc BC with Math 21, 5 on Calc AB with Math 21). Placement diagnostic (recommendation non-binding) at: https://exploredegrees.stanford.edu/undergraduatedegreesandprograms/#aptext.
Terms: Aut, Spr | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR

ENGR 155A: Ordinary Differential Equations for Engineers (CME 102)

Analytical and numerical methods for solving ordinary differential equations arising in engineering applications are presented. For analytical methods students learn to solve linear and non-linear first order ODEs; linear second order ODEs; and Laplace transforms. Numerical methods using MATLAB programming tool kit are also introduced to solve various types of ODEs including: first and second order ODEs, higher order ODEs, systems of ODEs, initial and boundary value problems, finite differences, and multi-step methods. This also includes accuracy and linear stability analyses of various numerical algorithms which are essential tools for the modern engineer. This class is foundational for professional careers in engineering and as a preparation for more advanced classes at the undergraduate and graduate levels. Prerequisites: knowledge of single-variable calculus equivalent to the content of Math 19-21 (e.g., 5 on Calc BC, 4 on Calc BC with Math 21, 5 on Calc AB with Math 21). Placement diagnostic (recommendation non-binding) at: https://exploredegrees.stanford.edu/undergraduatedegreesandprograms/#aptext.
Terms: Aut, Win, Sum | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR

ENGR 155B: Linear Algebra and Partial Differential Equations for Engineers (CME 104)

Linear algebra: systems of algebraic equations, Gaussian elimination, undetermined and overdetermined systems, coupled systems of ordinary differential equations, LU factorization, eigensystem analysis, normal modes. Linear independence, vector spaces, subspaces and basis. Numerical analysis applied to structural equilibrium problems, electrical networks, and dynamic systems. Fourier series with applications, partial differential equations arising in science and engineering, analytical solutions of partial differential equations. Applications in heat and mass transport, mechanical vibration and acoustic waves, transmission lines, and fluid mechanics. Numerical methods for solution of partial differential equations: iterative techniques, stability and convergence, time advancement, implicit methods, von Neumann stability analysis. Examples and applications drawn from a variety of engineering fields. Prerequisite: CME102/ENGR155A.
Terms: Spr | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR

ENGR 155C: Introduction to Probability and Statistics for Engineers (CME 106)

Probability: random variables, independence, and conditional probability; discrete and continuous distributions, moments, distributions of several random variables. Numerical simulation using Monte Carlo techniques. Topics in mathematical statistics: random sampling, point estimation, confidence intervals, hypothesis testing, non-parametric tests, regression and correlation analyses. Numerous applications in engineering, manufacturing, reliability and quality assurance, medicine, biology, and other fields. Prerequisite: CME100/ENGR154 or Math 51 or 52.
Terms: Win, Sum | Units: 4 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR

ENGR 159Q: Japanese Companies and Japanese Society (MATSCI 159Q)

Preference to sophomores. The structure of a Japanese company from the point of view of Japanese society. Visiting researchers from Japanese companies give presentations on their research enterprise. The Japanese research ethic. The home campus equivalent of a Kyoto SCTI course.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-SocSci
Instructors: ; Sinclair, R. (PI)

ENGR 180: Designing Black Experiences (AFRICAAM 180D)

This discussion-rich course is for students to learn design thinking to more confidently navigate life and careers as members and allies of the Black community. This course will allow students to navigate identity while building community to uplift Black voices through design thinking tools to help leverage their experiences and gain a competitive edge. Students will gain a deeper understanding of intersectionality, how to create and cultivate alignment, and learn to effectively navigate life design schemas, ideas, and options.
Terms: Win, Spr | Units: 2 | UG Reqs: WAY-CE

ENGR 193: Discover Engineering: How to Aim High, Embrace Uncertainty, and Achieve Impact

This weekly seminar will provide undergraduate and graduate students of all majors with practical leadership skills training (e.g. how to network, negotiate, advocate for yourself, assert influence) in order to make innovative and valuable contributions in their fields. This course will feature engaging lectures, interactive discussions, real-world case studies, scripts, and templates to provide students with highly actionable and timely insights so they can navigate upcoming opportunities and launch a meaningful career after Stanford.
Terms: Spr | Units: 1 | Repeatable 2 times (up to 2 units total)

ENGR 199: Special Studies in Engineering

Special studies, lab work, or reading under the direction of a faculty member. Often research experience opportunities exist in ongoing research projects. Students make arrangements with individual faculty and enroll in the section number corresponding to the particular faculty member. May be repeated for credit. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr | Units: 1-15 | Repeatable for credit

ENGR 199A: Additional Calculus for Engineers

Additional problem solving practice for the calculus courses. Sections are designed to allow students to acquire a deeper understanding of calculus and its applications, work collaboratively, and develop a mastery of the material. Limited enrollment, permission of instructor required. Concurrent enrollment in MATH 19, 20, 52, or 53 required
Terms: Win, Spr | Units: 1 | Repeatable for credit
Instructors: ; Andrade, L. (PI)

ENGR 199W: Writing of Original Research for Engineers

Technical writing in science and engineering. Students produce a substantial document describing their research, methods, and results. Prerequisite: completion of freshman writing requirements; prior or concurrent in 2 units of research in the major department; and consent of instructor. WIM for select School of Engineering majors with permission from advisor.
Terms: Aut, Win, Spr, Sum | Units: 1-3

ENGR 202C: Technical Communication for CEE SDC Students

Students learn how to write and present technical information clearly, with a focus on how to draft and revise reader-centered professional documents. The course includes elements of effective oral communication and presentation.This offering for CEE SDC students only.
Terms: Aut | Units: 3

ENGR 202S: Directed Writing Projects

Effective writing is key to academic and professional progress. 202S provides individualized writing instruction for students working on important writing projects such as dissertations, grant proposals, theses, journal articles, and teaching and research statements. The course consists of once weekly one-on-one conferences with lecturers from the Technical Communication Program. Students receive close attention to and detailed feedback on their writing to help them become more confident writers, hone their writing skills, and tackle any writing issues they may have. The TCP Director assigns each student to an instructor; meetings are scheduled by each instructor. No prerequisite. Grading: Satisfactory/No Credit. This course may be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit

ENGR 202W: Technical Communication

To be effective as an engineer or scientist, you must communicate your cutting-edge research and projects effectively to a broad range of audiences: your professors, your fellow students, your colleagues in the field, and sometimes the public. ENGR. 202W offers a collaborative environment in which you will hone your communication skills by writing and presenting about a project of your choosing and working on your CV/resume. ENGR202W is a practicum (supervised practical application) that helps you build toward a complete skillset for technical communication in the twenty-first century. Through interactive presentations and activities, group workshops, and individual conferences, you will learn best practices for communicating to academic and professional audiences for a range of purposes.
Terms: Aut, Win, Spr | Units: 3

ENGR 203: Public Speaking (ENGR 103)

Priority to Engineering students. Introduction to speaking activities, from impromptu talks to carefully rehearsed formal professional presentations. How to organize and write speeches, analyze audiences, create and use visual aids, combat nervousness, and deliver informative and persuasive speeches effectively. Weekly class practice, rehearsals in one-on-one tutorials, videotaped feedback. Limited enrollment.
Terms: Aut, Win, Spr | Units: 3
Instructors: ; Vassar, M. (PI)

ENGR 204R: Designing Your Spiritual Life (ENGR 104R)

The Stanford Life Design Lab applies human centered design thinking to tackling the "wicked" problems of life and vocational wayfinding. Designing Your Spiritual Life will introduce the innovative problem-solving methodology of design thinking within the context of "life design for students with a spiritual focus," with two main objectives: 1. to serve as an affinity space for students who have a spiritual tradition that informs their life view, to approach the wicked questions of life with a structured framework that helps them to process the various challenges that are unique to their college and life experiences as a potential religious minority, and 2. to equip these students with practical ideas and tools with which they can proactively craft their post-undergraduate vocational and life experiences. This class includes seminar-style and small-group discussions, activities, personal written reflections, guest speakers, and individual mentoring/coaching. Designing Your Spiritual Life will be co-taught by Junaid Aziz from the Design Group, the Life Design Lab, and Dr. Amina Darwish from the Office of Religious and Spiritual Life, and will include guest speakers - chaplains, priests, and spiritual leaders from the Office for Religious and Spiritual Life.
Terms: Aut | Units: 2 | Repeatable 2 times (up to 4 units total)

ENGR 205: Introduction to Control Design Techniques

Review of root-locus and frequency response techniques for control system analysis and synthesis. State-space techniques for modeling, full-state feedback regulator design, pole placement, and observer design. Combined observer and regulator design. Lab experiments on computers connected to mechanical systems. Prerequisites: 105, MATH 103, 113. Recommended: Matlab.
Terms: Aut | Units: 3

ENGR 208: Patent Law and Strategy for Innovators and Entrepreneurs (MS&E 278)

This course teaches the essentials for a startup founder to build a valuable patent portfolio and avoid a patent infringement lawsuit. Jeffrey Schox and Diana Lin are partners at Schox Patent Group, which is the law firm that wrote the patents for Coinbase, Cruise, Duo, Joby, Twilio and 500+ other startups that have collectively raised over $10B in venture capital. This course, which was previously called ME 208, is appropriate for students with any engineering background. For those students who are interested in a career in Patent Law, please note that this course is a prerequisite for ME238 Patent Prosecution. There are no prerequisites for this course, but the student must be at the senior or graduate level.
Terms: Aut | Units: 2-3

ENGR 209A: Analysis and Control of Nonlinear Systems

Introduction to nonlinear phenomena: multiple equilibria, limit cycles, bifurcations, complex dynamical behavior. Planar dynamical systems, analysis using phase plane techniques. Describing functions. Lyapunov stability theory. SISO feedback linearization, sliding mode control. Design examples. Prerequisite: 205.
Terms: Spr | Units: 3

ENGR 210: Perspectives in Assistive Technology (ENGR 110) (ENGR 110)

Seminar and student project course. Explores the medical, social, ethical, and technical challenges surrounding the design, development, and use of technologies that improve the lives of people with disabilities and older adults. Guest lecturers include engineers, designers, researchers, entrepreneurs, clinicians, and assistive technology users. Special activities include field trips to local facilities, an assistive technology faire, and a film screening. Students from any discipline are welcome to enroll. 3 units for students (juniors, seniors, and graduate students preferred) who pursue a team-based assistive technology project with a community partner - enrollment is limited to 27. 1 unit for seminar attendance only (CR/NC) or individual project (letter grade). Projects can be continued as independent study in Spring Quarter. See course website at http://engr110.stanford.edu. Designated a Cardinal Course by the Haas Center for Public Service.
Terms: Win | Units: 1-3

ENGR 217: Expanding Engineering Limits: Culture, Diversity, and Equity (CSRE 117, CSRE 217, ENGR 117, FEMGEN 117, FEMGEN 217)

This course investigates how culture and diversity shape who becomes an engineer, what problems get solved, and the quality of designs, technology, and products. As a course community, we consider how cultural beliefs about race, ethnicity, gender, sexuality, abilities, socioeconomic status, and other intersectional aspects of identity interact with beliefs about engineering, influence diversity in the field, and affect equity in engineering education and practice. We also explore how engineering cultures and environments respond to and change with individual and institutional agency. The course involves weekly presentations by scholars and engineers, readings, short writing assignments, small-group discussion, and hands-on, student-driven projects. Students can enroll in the course for 1 unit (lectures only), or 3 units (lectures+discussion+project). For 1 unit, students should sign up for Section 1 and Credit/No Credit grading, and for 3 units students should sign up for Section 2 and either the C/NC or Grade option.
Terms: Win | Units: 3

ENGR 219: Community Engagement Preparation Seminar (ENGR 119)

This seminar is designed for engineering students who have already committed to an experiential learning program working directly with a community partner on a project of mutual benefit. This seminar is targeted at students participating in the Summer Service Learning Program offered through Stanford¿s Global Engineering Program.
Last offered: Spring 2019 | Units: 1

ENGR 231: Transformative Design

In this course students are asked to experiment with transformations in their lives which both bring their actions and principles into fuller alignment and incorporate tools which give them more mastery in dealing with the negatives in their environment and lives. We start by assessing where we are now in important aspects of our lives. Then we compare these with where we would like to be. Then we work with partners to close the gap. Then we look at negatives in our lives and develop tools to transcend the negatives.
Terms: Spr | Units: 3
Instructors: ; Hayes, A. (PI); Utley, J. (PI)

ENGR 240: Introduction to Micro and Nano Electromechanical Systems

Miniaturization technologies now have important roles in materials, mechanical, and biomedical engineering practice, in addition to being the foundation for information technology. This course will target an audience of first-year engineering graduate students and motivated senior-level undergraduates, with the goal of providing an introduction to M/NEMS fabrication techniques, selected device applications, and the design tradeoffs in developing systems. The course has no specific prerequisites, other than graduate or senior standing in engineering; otherwise, students will require permission of the instructors.
Terms: Win | Units: 3

ENGR 241: Advanced Micro and Nano Fabrication Laboratory

This project course focuses on developing fabrication processes for ExFab, a shared facility that supports flexible lithography, heterogeneous integration, and rapid micro prototyping. Team projects are approved by the instructor and are mentored by an SNF staff member and an external mentor from industry. Students will plan and execute experiments and document them in a final presentation and report, to be made available on the lab's Wiki for the benefit of the Stanford research community. Students must consult with Prof. Fan, SNF staff, and an external mentor, and also need to submit an approved proposal before signing up.
Terms: Spr | Units: 3 | Repeatable 2 times (up to 6 units total)

ENGR 245: The Lean LaunchPad: Getting Your Lean Startup Off the Ground

Learn how to turn a technical idea from a lab, research, or vision into a successful business using the Lean Launchpad process (business model canvas, customer development, running experiments, and agile engineering.) Hands-on experiential class. 15+ hours per week talking to customers, regulators and partners outside the classroom, plus time building minimal viable products. This class is the basis of the National Science Foundation I-Corps with a focus on understanding all the components to build for deep technology and life science applications. Team applications required in March. Proposals may be software, hardware, or service of any kind. See course website http://leanlaunchpad.stanford.edu/. Prerequisite: interest in and passion for exploring whether your technology idea can become a real company. Limited enrollment.
Terms: Win, Spr | Units: 4-5

ENGR 248: Principled Entrepreneurial Decisions (ENGR 148)

Principled Entrepreneurial Decisions examines how leaders tackle significant inflection points that occur in high-growth entrepreneurial companies. Students learn how to develop principles as a powerful tool to face tough situations that they will encounter in their lives and their chosen career. Cases and guest speakers discuss not only the business rationale for the decisions taken but also how their principles affected those decisions. A capstone project provides frameworks for students to develop their own set of principles. The teaching team brings its wealth of experience in both entrepreneurship and VC investing to the class. Limited enrollment. Admission by application: https://forms.gle/VU36jjGwmsK54CsK9
Terms: Aut, Win | Units: 3

ENGR 265: Technology Licensing and Commercialization

Course focuses on how to bridge the gap between creation and commercialization with new ideas, inventions, and technology. Comprehensive introduction to patents, copyrights, trademarks, and trade secrets. Covers business strategies and legal aspects of determining what can be owned and licensed, how to determine commercial value, and what agreements and other paperwork is necessary. Discussion includes aspects of Contract and Intellectual Property law as well as provisions of license agreements, NDAs, and their negotiation. All materials provided including many sample documents.
Terms: Win | Units: 3
Instructors: ; Hustein, J. (PI)

ENGR 289: Career Building: Entrepreneurship / Intrapreneurship, People, Innovation, Decision-Making and Impact (CHEMENG 189, CHEMENG 289, RAD 189, RAD 289)

This course is designed to enable graduate students and advanced undergraduate students in science and engineering to hone strategies for career success. Drawing strongly on entrepreneurial principles and lessons from industry, the course complements the traditional curriculum by focusing on career-building tools that students need to improve their professional prospects and achieve their goals. Relevant for those who plan to pursue careers in academia and industry alike, a central focus will be on managing one's career as if it were a start-up, emphasizing principles that empower individuals to take more control of their futures: investing in yourself, building professional networks, taking intelligent risks, and making uncertainty and volatility work to one's advantage. Through a series of in-classroom presentations and interviews - with professors, entrepreneurs, executives, athletes, investors, and thought leaders from diverse fields and sectors - students will gain important knowledge and practical strategies, with course modules on topics such as ideation and innovation, the skill of self-advocacy, the fundamentals of negotiation, building and managing teams, and effective communication and storytelling. Additional modules will focus on biotechnology and deep tech start-up companies, as well as strategies for cultivating a successful academic career. The idea for this course emerged from the instructor's reflections on 30 years of research, teaching, mentorship, and deep entrepreneurial experiences spanning the gamut of approaches to translational science - academic discovery, invention, conceiving of and leading multi-institutional research centers, building research and business teams, launching and financing start-ups, building business models to advance real-world applications of cutting-edge science, and seeing through research-based companies to success (including growing an idea into a multi-billion dollar company). For this course, students will be expected to complete relevant reading assignments, participate actively in class dialogue, and complete regular writing assignments focused on course topics as they relate to ones own career-building needs and professional aspirations. Students may also have opportunities to lead class discussions on topics of interest.
Terms: Win | Units: 3

ENGR 295: Learning & Teaching of Science (CTL 280, EDUC 280, MED 270, PHYSICS 295)

This course will provide students with a basic knowledge of the relevant research in cognitive psychology and science education and the ability to apply that knowledge to enhance their ability to learn and teach science, particularly at the undergraduate level. Course will involve readings, discussion, and application of the ideas through creation of learning activities. It is suitable for advanced undergraduates and graduate students with some science background.
Last offered: Spring 2023 | Units: 3

ENGR 298: Seminar in Fluid Mechanics

Interdepartmental. Problems in all branches of fluid mechanics, with talks by visitors, faculty, and students. Graduate students may register for 1 unit, without letter grade; a letter grade is given for talks. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit

ENGR 299: Special Studies in Engineering

Special studies, lab work, or reading under the direction of a faculty member. Often research experience opportunities exist in ongoing research projects. Students make arrangements with individual faculty and enroll in the corresponding section. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

ENGR 304D: Designing Your Life

The course employs a design thinking approach to help fellows develop a point of view about their life and career. The course focuses on an introduction to design thinking, the integration of work and worldview, and practices that support vocation formation. Includes seminar-style discussions, role-playing, short writing assignments, guest speakers, and individual mentoring and coaching. Open to DCI (Distinguished Career Institute) Fellows only. Additional course information at http://www.designingyourlife.org.
Terms: Aut, Win, Spr | Units: 1 | Repeatable 4 times (up to 4 units total)

ENGR 306: Capital-Formation Design Theory in Practice

Wonder drives the best kinds of innovation and its injection into human endeavors can be designed and engineered. This course is for innovators of all academic backgrounds who have big ideas for creating new knowledge, agreements, products, services, or experiences. To do that, they need to master the science of capital formation. Capital is commonly thought of as money, but that's just one of its many forms; there is also human capital, process capital, intellectual capital, cultural capital, and natural capital. Knowing how to gather and nurture all these forms of capital is vital to any new venture. Students will practice high-performance team behaviors for capital formation, and they will engage in multiple projects to apply design theories to practical situations. Please complete this form: https://forms.gle/oLJkRTz8sWri2Mis6 before the first class.
Terms: Spr | Units: 1-3

ENGR 311A: Women's Perspectives

Graduate seminar featuring non-technical talks by engineers from academia and industry. The theme for 2024 is "Let's Get Real!" Discussion is encouraged as graduate students share experiences and learn with speakers and each other. Possible topics of discussion range from time management and career choices to diversity, health, and family. Several optional informal dinners are hosted after the seminar to continue conversation with the speakers. Speaker list will be posted at: https://stanfordmewomen.weebly.com/seminar.html. May be repeated for credit.
Terms: Win | Units: 1 | Repeatable for credit
Instructors: ; Sheppard, S. (PI)

ENGR 311B: Designing the Professional

Wondering how to weave together what really fits you, is doable, and will be satisfying and meaningful? Have more questions than answers? Have too many ideas for your career, or not enough? This course applies the mindsets and innovation principles of design thinking to the "wicked problem" of designing your life and vocation. Students gain awareness and empathy, define areas of life and work on which they want to work, ideate about ways to move forward, try small prototypes, and test their assumptions. The course is highly interactive. It will conclude with creation of 3 versions of the next 5 years and prototype ideas to begin making those futures a reality. The course will include brief readings, writing, reflections, and in-class exercises. Expect to practice ideation and prototyping methodologies, decision making practices and to participate in interactive activities in pairs, trios, and small groups. Seminar open to all graduate students and Postdocs in all 7 schools. Additional course information at http://lifedesignlab.stanford.edu/dtp.
Terms: Win, Spr | Units: 1-2 | Repeatable 3 times (up to 3 units total)

ENGR 311D: Portfolio to Professional: Supporting the Development of Digital Presence Through ePortfolios

This course guides graduate students in creating a professional ePortfolio and establishing an online presence. The course includes seminar-style presentations and discussions, opportunities for feedback with career mentors, classmates, alumni, employers, and other community members using think-aloud protocols and peer review approaches. Curriculum modules focus on strategies for telling your story in the digital environment, platform considerations, evidence and architecture, visual design and user experience. Open to all graduate students and majors.
Terms: Spr | Units: 1

ENGR 312: Science and Engineering Course Design (CTL 312)

For students interested in an academic career and who anticipate designing science or engineering courses at the undergraduate or graduate level. Goal is to apply research on science and engineering learning to the design of effective course materials. Topics include syllabus design, course content and format decisions, assessment planning and grading, and strategies for teaching improvement.
Terms: Win | Units: 2-3

ENGR 313: Topics in Engineering and Science Education

This seminar series focuses on topics related to teaching science, technology, engineering, and math (STEM) courses based on education research. Each year focuses on a different topic related to STEM education. This course may be repeated for credit each year. This year we will explore problem-based learning in STEM courses, particularly focusing on design and evaluation of problem-based learning activities. The course will involve in-class discussions, small group activities, and guest lectures. Throughout the quarter, there will be several opportunities for directly practicing and applying STEM education strategies to specific teaching goals in your field.
Last offered: Spring 2018 | Units: 1-2 | Repeatable for credit (up to 99 units total)

ENGR 350: Data Impact Lab

In this lab, multi-disciplinary teams of students tackle high-impact, unsolved problems for social sector partners. Teams receive mentorship and coaching from Stanford faculty, domain experts, and data science experts from industry. Sample projects include innovations for: poverty alleviation in the developing world, local government services, education, and healthcare. Limited enrollment; application required. May be repeated for credit. See http://datalab.stanford.edu for more information.
Last offered: Winter 2020 | Units: 1-6

ENGR 391: Engineering Education and Online Learning (EDUC 391)

A project based introduction to web-based learning design. In this course we will explore the evidence and theory behind principles of learning design and game design thinking. In addition to gaining a broad understanding of the emerging field of the science and engineering of learning, students will experiment with a variety of educational technologies, pedagogical techniques, game design principles, and assessment methods. Over the course of the quarter, interdisciplinary teams will create a prototype or a functioning piece of educational technology.
Terms: Aut | Units: 3
Instructors: ; Bowen, K. (PI)

ENGR 395: Summer Opportunities in Engineering Research & Leadership

Summer First provides Fellows from a range of engineering disciplines the opportunity to gain exposure to the wealth of resources on campus, and explore the research environment(s) in their own doctoral programs. This experience effectively serves as a supplementary research rotation for these graduate students, enabling them to explore research options over an additional quarter. Fellows also engage in small literature discussion groups, professional development workshops, excursions, mentoring opportunities, and social activities as a mechanism for fostering a sense of belonging and community. Fellows are incoming first year PhD students nominated by their departments. Instructor permission required.
| Units: 1
© Stanford University | Terms of Use | Copyright Complaints