Print Settings
 

AA 270: Distributed Space Systems

Keplerian orbital mechanics and orbital perturbations; the general relative motion problem; linear formation flying dynamics and control; impulsive station-keeping and reconfiguration; high order relative motion equations; formulation of relative motion using orbital elements; perturbation-invariant formations; nonlinear formation control; low-thrust propulsion for formation flying; relative navigation using GNSS and optical navigation; applications: sparse-aperture imaging, remote sensing, on-orbit servicing, rendezvous, and docking. Prerequisite: AA 242A, ENGR 105, AA 279A, and familiarity with MatLab.
Terms: Aut | Units: 3
Instructors: ; D'Amico, S. (PI)

AA 279A: Space Mechanics

Orbits of near-earth satellites and interplanetary probes; relative motion in orbit; transfer and rendezvous; orbit determination; influence of earth's oblateness; sun and moon effects on earth satellites; decay of satellite orbits; invited lectures from industry. Prerequisite: ENGR 15 and familiarity with MatLab.
Terms: Win | Units: 3

AA 279B: Advanced Space Mechanics

Restricted 3-body problem. Relative motion, Hill's and Clohessy-Wiltshire equations. Lambert's problem. Satellite constellations and optimization. Communications and link budgets. Space debris. High fidelity simulation. Interplanetary mission planning, launch windows and gravity assists. Basic trajectory optimization. Several guest lectures from practitioners in the field. Individual final project chosen in consultation with instructor. Prerequisites: 279A or equivalent with permission of instructor. Fluency with MATLAB (or another mathematical programming language with 2D and 3D plotting capabilities).
Terms: Spr | Units: 3
© Stanford University | Terms of Use | Copyright Complaints