Print Settings
 

BIO 104: Advanced Molecular Biology (BIO 200)

Molecular mechanisms that govern the replication, recombination, and expression of eukaryotic genomes. Topics: DNA replication, DNA recombination, gene transcription, RNA splicing, regulation of gene expression, protein synthesis, and protein folding. Satisfies Central Menu Area 1. Prerequisite: Biology core.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci

BIO 156: Epigenetics (BIO 256)

Epigenetics is the process by which phenotypes not determined by the DNA sequence are stably inherited in successive cell divisions. Course will cover the molecular mechanisms governing epigenetics, ranging from the discovery of epigenetic phenomena to present-day studies on the role of chromatin, DNA methylation, and RNA in regulating epigenetics processes. Topics include: position effect gene expression, genome regulation, gene silencing & heterochromatin, histone code, DNA methylation & imprinting, epigenetics & disease, and epigenetic-based therapeutics. Prerequisite: BIO41 and BIO42 or consent of instructor, advanced biology course such as Bio104
Terms: Spr | Units: 2
Instructors: ; Gozani, O. (PI); Liu, B. (TA)

BIO 256: Epigenetics (BIO 156)

Epigenetics is the process by which phenotypes not determined by the DNA sequence are stably inherited in successive cell divisions. Course will cover the molecular mechanisms governing epigenetics, ranging from the discovery of epigenetic phenomena to present-day studies on the role of chromatin, DNA methylation, and RNA in regulating epigenetics processes. Topics include: position effect gene expression, genome regulation, gene silencing & heterochromatin, histone code, DNA methylation & imprinting, epigenetics & disease, and epigenetic-based therapeutics. Prerequisite: BIO41 and BIO42 or consent of instructor, advanced biology course such as Bio104
Terms: Spr | Units: 2
Instructors: ; Gozani, O. (PI); Liu, B. (TA)
© Stanford University | Terms of Use | Copyright Complaints