Print Settings
 

EARTHSYS 2: Chemistry of the Earth and Planets (EPS 2)

(EPS 2 - Former GEOLSCI 2) Chemistry of the Earth and Planets Couse Description: Introduction to chemical principles with an emphasis on applications in the Earth Sciences. Topics include the origin and distribution of the elements in the solar system and on Earth, the origin and structure of the Earth, its oceans, and atmosphere; crystal chemistry, structure, and transformations; predicting and balancing reactions; thermodynamics, phase diagrams, high temperature and aqueous geochemistry, weathering, isotope geochemistry, and organic geochemistry. Students will also be exposed to analytical methods used in the Earth sciences. Change of Department Name: Earth & Planetary Sciences (Formerly Geological Science)
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA | Repeatable 3 times (up to 9 units total)

EARTHSYS 4: Coevolution of Earth and Life (EPS 4)

(EPS 4 - Former GEOLSCI 4) Earth is the only planet in the universe currently known to harbor life. When and how did Earth become inhabited? How have biological activities altered the planet? How have environmental changes affected the evolution of life? In this course, we explore these questions by developing an understanding of life's multi-billion year history using tools from biology, geology, paleontology, and chemistry. We discuss major groups of organisms, when they appear in the rock record, and how they have interacted with the Earth to create the habitats and ecosystems that we are familiar with today. Change of Department Name: Earth & Planetary Sciences (Formerly Geological Science)
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 8: The Oceans: An Introduction to the Marine Environment (ESS 8)

The course will provide a basic understanding of how the ocean functions as a suite of interconnected ecosystems, both naturally and under the influence of human activities. Emphasis is on the interactions between the physical and chemical environment and the dominant organisms of each ecosystem. The types of ecosystems discussed include coral reefs, deep-sea hydrothermal vents, coastal upwelling systems, blue-water oceans, estuaries, and near-shore dead zones. Lectures, multimedia presentations, group activities, and tide-pooling day trip.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA
Instructors: ; Arrigo, K. (PI)

EARTHSYS 10: Introduction to Earth Systems

For non-majors and prospective Earth Systems majors. Multidisciplinary approach using the principles of geology, biology, engineering, and economics to describe how the Earth operates as an interconnected, integrated system. Goal is to understand global change on all time scales. Focus is on sciences, technological principles, and sociopolitical approaches applied to solid earth, oceans, water, energy, and food and population. Case studies: environmental degradation, loss of biodiversity, and resource sustainability.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 11: Introduction to Geology (EPS 1)

(Former GEOLSCI 1) Why are earthquakes, volcanoes, and natural resources located at specific spots on the Earth's surface? Why are there rolling hills to the west behind Stanford and soaring granite walls to the east in Yosemite? What was the Earth like in the past, and what will it be like in the future? Lectures, hands-on laboratories, in-class activities, and one virtual field trip will help you see the Earth through the eyes of a geologist. Topics include plate tectonics, the cycling and formation of different types of rocks, and how geologists use rocks to understand Earth's history. Change of Department Name: Earth & Planetary Sciences (Formerly Geological Science)
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

EARTHSYS 26: Sustainability in Athletics

This interactive, seminar-style course explores the intersection of environmental sustainability and athletics. Athletic endeavors provide a unique lens to analyze environmental sustainability due to their global reach, engaged fan bases and widely popular sport icons. At the same time, the athletics industry produces an enormous environmental footprint with its travel, events, venue construction and maintenance, high protein diets, global supply chains for equipment, gear and even swag. Because of this reality, the sports industry has the opportunity and responsibility to create meaningful change in support of a sustainable future. We will explore the many ways that the athletics industry can make this change by inviting weekly speakers from a multitude of sports realms to share their expertise, vision and advice. There will be six learning modules addressing sustainability in terms of athletic gear and equipment, sports nutrition, facilities and stadiums, game days and events, the national and international stage, and individual sustainability superstars. Through taking this course, students will develop an understanding for the current state of athletic sustainability as well as future directions and opportunities for the industry in this space. They also get to undertake a real project on campus to further Stanford¿s commitment to sustainability as a purposeful university. The one unit option focusses on the weekly speakers, reading reflections and a final presentation, where the two unit option incorporates a sustainability in athletics project on campus. A project deliverable and presentation will serve as the culmination of this course.
Terms: Spr | Units: 1-2

EARTHSYS 36N: Life at the Extremes: From the Deep Sea to Deep Space

Preference to freshmen. Microbial life is diverse and resilient on Earth; could it survive elsewhere in our solar system? This seminar will investigate the diversity of microbial life on earth, with an emphasis on extremophiles, and consider the potential for microbial life to exist and persist in extraterrestrial locales. Topics include microbial phylogenetic and physiological diversity, biochemical adaptations of extremophiles, ecology of extreme habitats, and apparent requirements and limits of life. Format includes lectures, discussions, lab-based activities and local field trips. Basics of microbiology, biochemistry, and astrobiology.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA
Instructors: ; Dekas, A. (PI)

EARTHSYS 37Q: Food Justice Now! Power and Politics in the Ways We Eat (CSRE 37Q, SOC 37Q)

Where does the food you eat come from? How does it get to your plate? Where does it go when you don't finish it? And why are those particular items on your plate in the first place? How and what we eat is a vastly overlooked part of everyday life, and yet comes with huge personal, societal, and environmental effects, both positive and (quite often) negative. But this isn't indicative of personal moral failings or ignorance - rather, the food system was designed this way. And it leaves many of us without choice or consent around what we put into our bodies and how our actions impact those around us, thereby exacerbating social and health inequities. This class will uncover the secret workings of the global food system and introduce students to movements and efforts towards creating a more just food future for all. We will center on the concept of 'food justice,' which includes all ideas and practices that strive to eliminate exploitation and oppression within and beyond the food system. This trajectory will take us through understandings of economic, political, cultural, social, and ecological life, both now and in the past, providing students with a unique opportunity to gain interdisciplinary knowledge of food systems. For instance, we will learn about how historical and modern-day activists and scholars draw on movements for economic, gender, racial, climate, and environmental justice, and explore the possibilities for both reformative and transformative food politics. Finally, because food production, consumption, and activism are all highly tangible practices, the class will engage in field trips to the Stanford O'Donohue Family Farm, Stanford Food Institute's Teaching Kitchen, and a local Bay Area farm to get hands-on experience with what it means to eat more ethically.
Terms: Aut | Units: 3 | UG Reqs: WAY-EDP, WAY-SI
Instructors: ; Ramirez, B. (PI)

EARTHSYS 38N: The Worst Journey in the World: The Science, Literature, and History of Polar Exploration (EPS 38N, ESS 38N)

(Formerly GEOLSCI 38N) This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March. Change of Department Name: Earth and Planetary Science (Formerly Geologic Sciences).
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci

EARTHSYS 46: Introduction to Research in Ecology and Evolutionary Biology (BIO 46)

The goal of this course is to develop an understanding of how to conduct biological research, using topics in Ecology as practical examples. This includes the complete scientific process: assessing background literature, generating testable hypotheses, learning techniques for data collection, analyzing data using appropriate statistical methods and writing and sharing results. Students, working in teams, develop novel research hypotheses and execute the necessary experiments and measurements to test these hypotheses. In addition, students will learn how to manipulate, visualize, and analyze data in the statistical programming language R. The capstone of the course is a research paper in the style of a peer-reviewed journal article, as well as a group presentation designed for a general audience that communicates research findings. The Tuesday lecture session will generally meet for only about 60-70 minutes. IMPORTANT NOTE: Students who require BIO 46 to satisfy the WIM requirement for the Biology major MUST take this course for a letter grade. Please contact Elisa Mora (elisahm@stanford.edu) for logistical and enrollment questions.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA
Instructors: ; WU, A. (PI)

EARTHSYS 46N: Exploring the Critical Interface between the Land and Monterey Bay: Elkhorn Slough (ESS 46N)

Preference to freshmen. Field trips to sites in the Elkhorn Slough, a small agriculturally impacted estuary that opens into Monterey Bay, a model ecosystem for understanding the complexity of estuaries, and one of California's last remaining coastal wetlands. Readings include Jane Caffrey's "Changes in a California Estuary: A Profile of Elkhorn Slough". Basics of biogeochemistry, microbiology, oceanography, ecology, pollution, and environmental management.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA
Instructors: ; Francis, C. (PI)

EARTHSYS 47: Introduction to Research in Ecology and Evolutionary Biology (BIO 47)

The goal of this course is to develop an understanding of how to conduct biological research, using a topic in Ecology, Evolutionary Biology, and Plant Biology as a practical example. This includes the complete scientific process: assessing background literature, generating testable hypotheses, learning techniques for field- and lab-based data collection, analyzing data using appropriate statistical methods, and, finally, writing and sharing your results. To build these skills, this course will focus on nectar microbes at Stanford's nearby Jasper Ridge Biological Preserve. Students, working in teams, will develop novel research hypotheses and execute the necessary experiments and measurements to test these hypotheses. The capstone of the course is an oral presentation of student teams' research findings, as well as a research paper written in the style of a peer-reviewed journal article. Labs will be completed both on campus and at Jasper Ridge. Although there are no pre-requisites to enroll in the class, it will be helpful if you have already taken BIO 81 or HUMBIO 2A. IMPORTANT NOTE: Satisfies WIM requirement in Biology but must be taken for a letter grade.
Terms: Spr | Units: 4

EARTHSYS 56: Understanding and Imagining Sustainable Food Systems

What does resilient and sustainable agriculture look like? How do we provide people with enough nutritious food that they enjoy eating? What does a community-centered food system even look like - and what's stopping us from creating it? This discussion-based course examines these questions, drawing on a variety of sources to give students an introduction to sustainable food and agriculture. Over the course of the quarter, students will explore what modern farming practices look like and begin to understand the forces that have shaped what and how we eat. This course will approach each topic with an imaginative lens, asking not only what methods and practices are currently in place, but also exploring what could be possible. Content includes indigenous farming practices and food sovereignty, rural and urban food landscapes, food insecurity and nutrition assistance programs, the Farm Bill, technology, and more. Students taking the course for 1 unit will complete the required readings, a short discussion post, and join for an in-class discussion. The 2-unit option additionally includes a project where students will design a plan for a small-scale farm that addresses some aspect of the course (eg. food insecurity or technology in farming).
Terms: Spr | Units: 1-2

EARTHSYS 100A: Introduction to Data Science for Geoscience (EPS 6)

(Formerly GEOLSCI 6) This course provides an overview of the most relevant areas of data science to address geoscientific challenges and questions as they pertain to the environment, earth resources & hazards. The focus lies on the methods that treat common characters of geoscientific data: multivariate, multi-scale, compositional, geospatial and space-time. In addition, the course will treat those statistical method that allow a quantification of the human dimension by looking at quantifying impact on humans (e.g. hazards, contamination) and how humans impact the environment (e.g. contamination, land use). The course focuses on developing skills that are not covered in traditional statistics and machine learning courses. Change of Department Name: Earth and Planetary Science (Formerly Geologic Sciences).
Terms: Win | Units: 3 | UG Reqs: WAY-AQR | Repeatable 3 times (up to 9 units total)

EARTHSYS 101: Energy and the Environment (ENERGY 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

EARTHSYS 101C: Science for Conservation Policy: Meeting California's Pledge to Protect 30% by 2030 (BIO 101)

California has set the ambitious goal of conserving 30% of its lands and waters by the year 2030. In this course, students will develop science-based recommendations to help policymakers reach this '30 by 30' goal. Through lectures, labs, and field trips, students will gain practical skills in ecology, protected area design in the face of climate change, and science communication. Students will apply these skills to analyze real-world data, formulate conservation recommendations, and communicate their findings in verbal and written testimony to policymakers. Prerequisites: BIO 81 or BIO/EARTHSYS 105 or BIO/EARTHSYS 111 or instructor approval.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR

EARTHSYS 102: Fundamentals of Renewable Power (ENERGY 102)

Do you want a much better understanding of renewable power technologies? Did you know that wind and solar are the fastest growing forms of electricity generation? Are you interested in hearing about the most recent, and future, designs for green power? Do you want to understand what limits power extraction from renewable resources and how current designs could be improved? This course dives deep into these and related issues for wind, solar, biomass, geothermal, tidal and wave power technologies. We welcome all student, from non-majors to MBAs and grad students. If you are potentially interested in an energy or environmental related major, this course is particularly useful.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

EARTHSYS 103: Understand Energy (CEE 107A, CEE 207A, ENERGY 107A, ENERGY 207A)

NOTE: This course will be taught in-person on main campus, lectures are recorded and available asynchronously. Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. In taking this course, students will not only understand the fundamentals of each energy resource - including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulation, and social, economic, and environmental impacts - students will also be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The 4 unit course includes lecture and in-class discussion, readings and videos, homework assignments, one on-campus field trip during lecture time and two off-campus field trips with brief report assignments. Off-campus field trips to wind farms, solar farms, nuclear power plants, natural gas power plants, hydroelectric dams, etc. Enroll for 5 units to also attend the Workshop, an interactive discussion section on cross-cutting topics that meets once per week for 80 minutes (Mondays, 12:30 PM - 1:50 PM). Open to all: pre-majors and majors, with any background! Website: https://understand-energy-course.stanford.edu/ CEE 107S/207S Understand Energy: Essentials is a shorter (3 unit) version of this course, offered summer quarter. Students should not take both for credit. Prerequisites: Algebra.
Terms: Aut, Spr | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-SI

EARTHSYS 105A: Ecology and Natural History of Jasper Ridge Biological Preserve (BIO 105A)

The Ecology and Natural History of the Jasper Ridge Biological Preserve is an upper-division course that aims to help students learn ecology and natural history using a 'living laboratory,' the Jasper Ridge Biological Preserve. The course's central goal is that, as a community of learning, we examine 'via introductory discussions, followed by hands-on experiences in the field' the scientific basis of ecological research, archaeology, edaphology, geology, species interactions, land management, and multidisciplinary environmental education. The first 10 sessions that compose the academic program are led by the instructors, faculty (world-experts on the themes of each session), and JRBP staff. In addition, this 20-week class (winter and spring quarters) trains students to become JRBP Docents that will join the Jasper Ridge education affiliates community. Completion of both Winter (BIO 105A) and Spring (BIO 105B) sequence training program is required to join the Ecology and Natural History of Jasper Ridge Biological Preserve course.
Terms: Win | Units: 4

EARTHSYS 105B: Ecology and Natural History of Jasper Ridge Biological Preserve (BIO 105B)

The Ecology and Natural History of the Jasper Ridge Biological Preserve is an upper-division course that aims to help students learn ecology and natural history using a 'living laboratory,' the Jasper Ridge Biological Preserve. The course's central goal is that, as a community of learning, we examine 'via introductory discussions, followed by hands-on experiences in the field' the scientific basis of ecological research, archaeology, edaphology, geology, species interactions, land management, and multidisciplinary environmental education. The first 10 sessions that compose the academic program are led by the instructors, faculty (world-experts on the themes of each session), and JRBP staff. In addition, this 20-week class (winter and spring quarters) trains students to become JRBP Docents that will join the Jasper Ridge education affiliates community. Completion of both Winter (BIO 105A) and Spring (BIO 105B) sequence training program is required to join the Ecology and Natural History of Jasper Ridge Biological Preserve course.
Terms: Spr | Units: 4

EARTHSYS 106: World Food Economy (EARTHSYS 206, ECON 106, ECON 206, ESS 106, ESS 206)

The World Food Economy is a survey course that covers the economic and political dimensions of food production, consumption, and trade. The course focuses on food markets and food policy within a global context. It is comprised of three major sections: structural features (agronomic, technological, and economic) that determine the nature of domestic food systems; the role of domestic food and agricultural policies in international markets; and the integrating forces of international research, trade, and food aid in the world food economy. This 5-unit course entails a substantial group modeling project that is required for all students. Enrollment is by application only. The application is found at https://economics.stanford.edu/undergraduate/forms. Applications will be reviewed on a first-come, first-serve basis, and priority will be given to upper-level undergraduates who need the course for their major, and to graduate students pursuing work directly related to the course. The application submission period will close on March 15
Terms: Spr | Units: 5 | UG Reqs: WAY-SI

EARTHSYS 109: Rethinking Meat: An Introduction to Alternative Proteins (EARTHSYS 209, ESS 103, ESS 203, ETHICSOC 107)

How do we feed a growing population in the face of climate change? Will Impossible Burgers become the new norm? Are you curious to learn about a frontier in bio- and chemical-engineering? Are you passionate about animal rights, human health, and sustainable agriculture? Learn about the environmental, ethical, and economic drivers behind the market for meat replacements. We'll take a deep dive into the science and technology used to develop emerging plant, fermentation and cell-based meat alternatives and explore the political challenges and behavioral adaptation needed to decrease meat consumption. Hear from entrepreneurs, researchers, and innovative startups developing sustainable and marketable alternative proteins through weekly guest lectures from industry leaders.
Terms: Spr | Units: 1-2

EARTHSYS 110: Introduction to the Foundations of Contemporary Geophysics (GEOPHYS 110, GEOPHYS 215)

Introduction to the foundations of contemporary geophysics. Lectures link important topics in contemporary Geophysics ("What we study") to methods used to make progress on these topics ("How we study"). Topics range from plate tectonics to natural hazards; ice sheets to sustainability. For each topic, we focus is on how the interpretation of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetism and remote sensing) provides fundamental insight into the behavior of the Earth. The course will includes a required all-day Saturday field exercise Feb 02/10 (rain-date: 02/17). Prerequisite: CME 100 or MATH 51, or co-registration in either.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

EARTHSYS 111: Biology and Global Change (BIO 117, EARTHSYS 217, ESS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or BIO 81 or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 112: Human Society and Environmental Change (EARTHSYS 212, ESS 112, HISTORY 103D)

Interdisciplinary approaches to understanding human-environment interactions with a focus on economics, policy, culture, history, and the role of the state. Prerequisite: ECON 1.
Terms: Aut | Units: 4 | UG Reqs: WAY-SI

EARTHSYS 113: Earthquakes and Volcanoes (GEOPHYS 90)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA
Instructors: ; Beroza, G. (PI)

EARTHSYS 114: Global Change and Emerging Infectious Disease (EARTHSYS 214, ESS 213, HUMBIO 114)

The changing epidemiological environment. How human-induced environmental changes, such as global warming, deforestation and land-use conversion, urbanization, international commerce, and human migration, are altering the ecology of infectious disease transmission, and promoting their re-emergence as a global public health threat. Case studies of malaria, cholera, hantavirus, plague, and HIV.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-SocSci, WAY-AQR, WAY-SMA
Instructors: ; Jones, J. (PI)

EARTHSYS 119: Just Transitions Policy Lab (CSRE 155, URBANST 155)

Building off the work of the Stanford Coalition for Planning an Equitable 2035 (SCoPE), the just transitions policy lab will address transportation justice, housing justice, and labor equity concerns that have been identified by neighboring communities to Stanford and our service workers as part of local land use planning and policy processes. Building on the success of earlier housing justice policy lab initiatives, this course will support ongoing policy engagement in local land use planning process, including housing and transportation justice issues. Key concepts addressed will include environmental justice (EJ) and just transitions frameworks, as well as building awareness of the Bay Area housing crisis. The course will culminate in class projects that will involve working with community partners to address information gaps on worker experiences and housing and transportation needs. Sessions will prioritize 1) foundational concepts in environmental justice 2) current issues in our community related to housing, transportation, and labor equity, 2) peer learning through collective engagement in readings and project planning, 4) community connections related to SCoPE initiatives that deepen existing relationships, and 5) policy analysis related to local land use planning processes. The teaching team will be accepting brief student applications for course participation prior to Winter quarter. To apply for this course, please fill out this google form: https://forms.gle/SjdgWwzNBGP2uQYA6 Due December 8 at 11:59pm. Cardinal Course certified by the Haas Center for Public Service.
Terms: Win | Units: 4
Instructors: ; Diver, S. (PI); Gupta, A. (SI)

EARTHSYS 120: Environmental Justice in California (EARTHSYS 220)

Although California is considered a National policy leader in environmental justice, communities across the state struggle for basic environmental rights. Through lectures, readings, and field trips, this course will analyze this contradiction by examining the development of environmental justice movements and environmental justice policy in California. The course will explore how California's political, social, and economic histories inform environmental justice struggles. We will study specific and intersecting challenges facing African American, Indigenous, Latinx, and AAPI communities. This course will include an introduction to theories, such as de-growth and Municipalism, applied in strategies for environmental justice; as well as, analyses of topics ranging from agricultural labor, incarceration, extractive industries, and environmental justice in Silicon Valley.
Terms: Win | Units: 3

EARTHSYS 123: Tribal Food Sovereignty (NATIVEAM 123)

Connections: Tribal Food Systems and Indigenous Food Sovereignty¿ will explore Indigenous food systems and implications on land, environment, community and Individual health of Indigenous peoples of North America, pre-contact to present, Indigenous responses to western colonial models of eating and living, challenges to Indigenous food sovereignty initiatives and implications for 'present' understandings of food, food production, and relationships with collective resources such as water, land, and people. Students will be exposed to Indigenous food sovereignty advocates, protectors, and thinkers, as well as, hands on activities along with practical grant writing skills.
Terms: Spr | Units: 3
Instructors: ; Briones, V. (PI)

EARTHSYS 123A: Biosphere-Atmosphere Interactions (EARTHSYS 223, ESS 123, ESS 223)

How do ecosystems respond to climate change, and how can ecosystems affect climate? This course describes, quantitatively and qualitatively, the different feedback mechanisms between the land surface and climate at both local and global scales. We will also discuss how these processes can be modelled and measured across earth's diverse ecosystems, and how they affect prospects for nature-based climate solutions. Basic familiarity with programming is helpful.
Terms: Win | Units: 3-4

EARTHSYS 125: Shades of Green: Exploring and Expanding Environmental Justice in Practice (CSRE 125E, EARTHSYS 225, URBANST 125)

Historically, discussions of race, ethnicity, culture, and equity in the environment have been shaped by a limited view of the environmental justice movement, often centered on urban environmental threats and separated from other types of environmental and climate advocacy. This course will seek to expand on these discussions by exploring topics such as access to outdoor spaces, definitions of wilderness, inclusion in environmental organizations, gender and the outdoors, the influence of colonialism on ways of knowing, food justice and ethics, and the future of climate change policy. The course will also involve a community partnership project. In small groups students will work with an environmental organization to problem-solve around issues of equity, representation, and access. We value a diversity of experiences and epistemologies and welcome undergraduates from all disciplines. Since this is a practical course, there will be a strong emphasis on participation and commitment to community partnerships. This course requires instructor approval, please submit an application by March 5th at midnight. Application available at https://forms.gle/2kRJFRyfwopWcBeT9
Terms: Spr | Units: 3-4 | UG Reqs: WAY-EDP

EARTHSYS 130B: Quest for an Inclusive Clean Energy Economy (CEE 130B, CEE 330B, EARTHSYS 330B)

Building bridges across the clean energy divide involves addressing barriers to participation. These barriers affect the pace of investment, especially for distributed energy solutions such as building energy upgrades, on-site solar, and transportation electrification. This course will explore innovative business models that are responsive to calls for equity and inclusion, and it will give special attention to California's ongoing clean energy finance rulemaking in the utility sector to open the clean energy economy for all.
Terms: Win | Units: 3-4 | UG Reqs: WAY-EDP

EARTHSYS 131: Pathways in Sustainability Careers

Interactive, seminar-style sessions expose students to diverse career pathways in sustainability. Professionals from a variety of careers discuss their work, their career development and decision-points in their career pathways, as well as life style aspects of their choices.
Terms: Win, Spr | Units: 1

EARTHSYS 133: Social Enterprise Workshop (URBANST 133)

Social Enterprise Workshop: A team based class to design solutions to social issues. In the class students will identify issues they are interested in, such as housing, food, the environment, or college access. They will join teams of like-minded students. Working under the guidance of an experienced social entrepreneur, together they will develop a solution to one part of their issue and write a business plan for that solution. The class will also feature guests who are leaders in the field of social entrepreneurship who will share their stories and help with the business plans. The business plan exercise can be used for both nonprofits and for-profits. Previous students have started successful organizations and raised significant funds based on the business plans developed in this class. There are no prerequisites, and students do not need to have an idea for a social enterprise to join the class. Enrollment limited to 20. May be repeated for credit.
Terms: Aut | Units: 4 | UG Reqs: WAY-SI | Repeatable for credit
Instructors: ; Scher, L. (PI)

EARTHSYS 134: Environmental Justice: Reflection

The EJ reflection class is intended to provide a supported learning space for students who are in the Earth Systems Program Environmental Justice Minor. We will review basic Environmental Justice (EJ) concepts, such as historical underpinnings of EJ problems and movements, principles of EJ guiding social movements and research practice, how to engage in one's own positionality relative to environmental justice, and best practices for EJ communication that centers voices. agency, and leadership of Black, Indigenous, Latinx, Asian and Asia Pacific Islander communities, and other groups historically made marginalized. Students in the minor will also share out project learnings to date, and support one another in refining EJ capstone and/or requirements for the Cardinal Service Notation. We will also host guest sessions to speak to student interests, possible to include trainings, professional development goals.
Terms: Spr | Units: 2

EARTHSYS 135: Challenging the Status Quo: Social Entrepreneurs, Democracy, Development and Environmental Justice (AFRICAST 142, AFRICAST 242, CSRE 142C, INTNLREL 142, URBANST 135)

This community-engaged learning class is part of a broader collaboration between the Program on Social Entrepreneurship at the Haas Center for Public Service, Distinguished Visitors Program and the Doerr School of Sustainability, using practice to better inform theory about how innovation can help address society's biggest challenges with a particular focus on environmental justice, sustainability and climate resilience for frontline and marginalized communities who have or will experience environmental harms. Working with the instructor and the 2024 Distinguished Visitors ? Angela McKee-Brown, founder and CEO of Project Reflect; Jason Su, executive director of the Guadalupe River Park Conservancy; Cecilia Taylor, founder, executive director, and CEO of Belle Haven Action; and Violet Wulf-Saena, founder and executive director of Climate Resilient Communities ? students will use case studies of successful and failed social change strategies to explore relationships between social entrepreneurship, race, systemic inequities, democracy and justice. This course interrogates approaches like design theory, measuring impact, fundraising, leadership, storytelling, and policy advocacy with the Distinguished Visitors providing practical examples from their work on how this theory plays out in practice. This is a community-engaged learning class in which students will learn by working on projects that support the social entrepreneurs' efforts to promote social change. Students should register for either 3 OR 5 units only. Students enrolled in the full 5 units will have a service-learning component along with the course. Students enrolled for 3 units will not complete the service-learning component. Limited enrollment. Attendance at the first class is mandatory in order to participate in service learning. Graduate and undergraduate students may enroll.
Terms: Spr | Units: 3-5 | UG Reqs: WAY-SI
Instructors: ; Janus, K. (PI)

EARTHSYS 137: Concepts and Analytic Skills for the Social Sector (URBANST 132)

How to develop and grow innovative nonprofit organizations and for-profit enterprises which have the primary goal of solving social and environmental problems. Topics include organizational mission, strategy, market/user analysis, communications, funding, recruitment and impact evaluation. Perspectives from the field of social entrepreneurship, design thinking and social change organizing. Opportunities and limits of using methods from the for-profit sector to meet social goals. Focus is on integrating theory with practical applications, including several case exercises and simulations. One-day practicum where students advise an actual social impact organization. Enrollment limited to 20.
Terms: Win | Units: 4 | UG Reqs: GER:DB-SocSci, WAY-SI

EARTHSYS 139A: Designing Regenerative Societies (STS 139)

The world is changing in contradictory ways. Emerging technology, the evolving geopolitical economy, and ecological challenges present opportunities but also cascading risks. The pathway from our current destructive and extractive economy towards a more regenerative economy is unclear. There is a stark tension between gigascale opportunities such as AI, fusion energy, nanotech, quantum tech, space colonization, and biomanufacturing on the one hand, and degrowth necessities such as rethinking growth and using less resources on the other. This tension is steeped in political choices constrained by industrial power dynamics and conditioned by inequality. To what extent do visions and incentives align across industry, government, and social movements? What would the choice to scale or descale entail in each case - and are they mutually exclusive? The course introduces empirically driven systems thinking with in-depth modules on both emerging tech and degrowth, and scenario-based tech foresight. We combine the tools of technology foresight, gaming, scenarios, speculative fiction, and worldbuilding, exploring and assessing utopian or dystopian trends, visions, and projects (e.g. the Eden project, biomanufacturing at scale, smart cities, the Metaverse, generation spaceships, space colonization, human longevity, mega-disruptive startups, global health governance, radical longtermism, and religious `heavens'). The goal of the course is to gain clarity on the innovation boundaries within which the next 50 years might develop. The course prepares students to become disruptors of governance principles, strategies, and leadership of corporations, philanthropies, economies, and civilizations.
Terms: Spr | Units: 3-4
Instructors: ; Undheim, T. (PI)

EARTHSYS 140: Data Science for Geoscience (EARTHSYS 240, ENERGY 240, EPS 140, EPS 240, ESS 239)

(Formerly GEOLSCI 140 and 240) Overview of some of the most important data science methods (statistics, machine learning & computer vision) relevant for geological sciences, as well as other fields in the Earth Sciences. Areas covered are: extreme value statistics for predicting rare events; compositional data analysis for geochemistry; multivariate analysis for designing data & computer experiments; probabilistic aggregation of evidence for spatial mapping; functional data analysis for multivariate environmental datasets, spatial regression and modeling spatial uncertainty with covariate information (geostatistics). Identification & learning of geo-objects with computer vision. Focus on practicality rather than theory. Matlab exercises on realistic data problems. Change of Department Name: Earth and Planetary Science (Formerly Geologic Sciences).
Terms: Win | Units: 3
Instructors: ; Caers, J. (PI); Lathi, P. (TA)

EARTHSYS 141: Remote Sensing of the Oceans (EARTHSYS 241, ESS 141, ESS 241, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR
Instructors: ; Arrigo, K. (PI)

EARTHSYS 142: Remote Sensing of Land (EARTHSYS 242, ESS 162, ESS 262)

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR

EARTHSYS 143H: Quantitative Methods for Marine Ecology and Conservation (BIO 143, BIO 243, CEE 164, CEE 264H, EARTHSYS 243H, OCEANS 143)

NOTE: This course will be taught in-person on main campus, in hybrid format with Zoom options. The goal of this course is to learn the foundations of ecological modeling with a specific (but not exclusive) focus on marine conservation and sustainable exploitation of renewable resources. Students will be introduced to a range of methods - from basic to advanced - to characterize population structure, conduct demographic analyses, estimate extinction risk, identify temporal trends and spatial patterns, quantify the effect of environmental determinants and anthropogenic pressures on the dynamics of marine populations, describe the potential for adaptation to climate change. This course will emphasize learning by doing, and will rely heavily on practical computer laboratories, in R and/or Phyton, based on data from our own research activities or peer reviewed publications. Students with a background knowledge of statistics, programming and calculus will be most welcome. Formally BIOHOPK 143H and 243H.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR, WAY-FR

EARTHSYS 144: Fundamentals of Geographic Information Science (GIS) (ESS 164)

Everything is somewhere, and that somewhere matters." The rapid growth and maturity of spatial data technologies over the past decade represent a paradigm shift in the applied use of location data from high-level overviews of administrative interests, to highly personalized location-based services that place the individual at the center of the map, at all times. The use of spatial data and related technology continues to grow in fields ranging from environmental sciences to epidemiology to market prediction. This course will present an overview of current approaches to the use of spatial data and its creation, capture, management, analysis and presentation, in a research context. Topics will include modeling of geographic objects and associated data, modeling of geographic space and the conceptual foundations of "spatial thinking," field data collection, basic spatial statistical analysis, remote sensing & the use of satellite-based imagery, "Big Data" and machine learning approaches to spatial data, and cartographic design and presentation including the use of web-based "Storymap" platforms. The course will consist of weekly lectures, guest speakers, computer lab assignments, midterm and final exams, as well as an individual final project requirement. This course must be taken for a minimum of 3 units and a letter grade to be eligible for Ways credit.
Terms: Aut, Spr | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR

EARTHSYS 146A: Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation (CEE 161I, CEE 261I, ESS 246A)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Terms: Aut | Units: 3

EARTHSYS 149: Wild Writing (EARTHSYS 249)

What is the wild? What is our relationship to nature, and why does this relationship matter? We will interrogate these questions through the work of influential, diverse, primarily American environmental writers who have given voice to many ways of knowing the wonder, fragility, complexity, and power of the natural world and have inspired readers to act on behalf of social-environmental causes. This course centers the work of diverse voices, including Indigenous, Black, and Chicana writers, enabling us to consider some of the many ways that people have understood and experienced nature throughout history and the relevance of these manifold ways of knowing to our conceptualizations of nature today. Students will develop their responses to the question of what is the wild and why it matters through a series of synchronous and asynchronous in-the-field writing exercises that integrate personal narrative and environmental scholarship, culminating in a ~3000-word narrative nonfiction essay. This course will provide students with knowledge, tools, experience, and skills that will empower them to become more persuasive environmental storytellers and advocates.If you are interested in signing up for the course, complete this pre-registration form:https://stanforduniversity.qualtrics.com/jfe/form/SV_9XqZeZs036WIvop
Terms: Spr | Units: 3 | UG Reqs: WAY-CE

EARTHSYS 151: Biological Oceanography (EARTHSYS 251, ESS 151, ESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA
Instructors: ; Arrigo, K. (PI)

EARTHSYS 153: Solving Social Problems with Data (COMM 140X, DATASCI 154, ECON 163, MS&E 134, POLISCI 154, PUBLPOL 155, SOC 127)

Introduces students to the interdisciplinary intersection of data science and the social sciences through an in-depth examination of contemporary social problems. Provides a foundational skill set for solving social problems with data including quantitative analysis, modeling approaches from the social sciences and engineering, and coding skills for working directly with big data. Students will also consider the ethical dimensions of working with data and learn strategies for translating quantitative results into actionable policies and recommendations. Lectures will introduce students to the methods of data science and social science and apply these frameworks to critical 21st century challenges, including education & inequality, political polarization, and health equity & algorithmic design in the fall quarter, and social media, climate change, and school choice & segregation in the spring quarter. In-class exercises and problem sets will provide students with the opportunity to use real-world datasets to discover meaningful insights for policymakers and communities. This course is the required gateway course for the new major in Data Science & Social Systems. Preference given to Data Science & Social Systems B.A. majors and prospective majors. Course material and presentation will be at an introductory level. Enrollment and participation in one discussion section is required. Sign up for the discussion section will occur on Canvas at the start of the quarter. Prerequisites: CS106A (required), DATASCI 112 (recommended as pre or corequisite). Limited enrollment. Please complete the interest form here: https://forms.gle/8ui9RPgzxjGxJ9k29. A permission code will be given to admitted students to register for the class.
Terms: Aut, Spr | Units: 5 | UG Reqs: WAY-AQR, WAY-SI

EARTHSYS 155: Science of Soils (ESS 155)

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Terms: Spr | Units: 4-5 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Fendorf, S. (PI)

EARTHSYS 156: The Future of Global Systemic Risk (SOC 128, STS 156)

The global risk environment is changing. Seemingly distinct large-scale risks affect what we now realize are mutually interdependent human, socio-technical, and ecological systems. As a result, consequences are more catastrophic, and costs are set to accelerate. How do we determine the top risks of this decade to prioritize actions, and how are both risks and actions likely to evolve and interact? This course investigates the data, methods, and insights mobilized by key actors such as corporations, governments, and academics to assess systemic risk, create future scenarios, and generate predictions. What are the track records of recognized systemic risk assessment and modeling toolkits? Going forward, how can we get better at risk prevention and mitigation? This year, the course will focus on combined risks from the environmental, health, and emerging tech domains. The key objective is to quickly learn relevant vocabularies (risk, tech, and futurist) by engaging with both traditional and emerging assessment methods, in order to discover how to shape positive societal outcomes in the next decade and beyond. The course prepares students for key roles in the assessment, management, and prediction of risks, technologies, markets, industries, infrastructures, and futures. People with these skills can affect the governance principles, strategies, and leadership of corporations, philanthropies, states, economies, and entire societies.
Terms: Spr | Units: 3-4
Instructors: ; Undheim, T. (PI)

EARTHSYS 160: Sustainable Cities (URBANST 164)

Community-engaged learning course that exposes students to sustainability concepts and urban planning as a tool for determining sustainable outcomes in the Bay Area. The focus will be on land use and transportation planning to housing and employment patterns, mobility, public health, and social equity. Topics will include government initiatives to counteract urban sprawl and promote smart growth and livability, political realities of organizing and building coalitions around sustainability goals, and increasing opportunities for low-income and communities of color to achieve sustainability outcomes. Students will participate in remote team-based projects in collaboration with Bay Area community partners. Prerequisites: Consent of the instructor. (Cardinal Course certified by the Haas Center.) Apply here: https://docs.google.com/forms/d/e/1FAIpQLSfhY1w5A_PCjmKdMcGNaZ6Hic24T2zvgF7CfcGrL2tWCWnQGg/viewform
Terms: Spr | Units: 4-5 | UG Reqs: WAY-EDP, WAY-SI
Instructors: ; Kos, R. (PI)

EARTHSYS 162: Data for Sustainable Development (CS 325B, EARTHSYS 262)

The sustainable development goals (SDGs) encompass many important aspects of human and ecosystem well-being that are traditionally difficult to measure. This project-based course will focus on ways to use inexpensive, unconventional data streams to measure outcomes relevant to SDGs, including poverty, hunger, health, governance, and economic activity. Students will apply machine learning techniques to various projects outlined at the beginning of the quarter. The main learning goals are to gain experience conducting and communicating original research. Prior knowledge of machine learning techniques, such as from CS 221, CS 229, CS 231N, STATS 202, or STATS 216 is required. Open to both undergraduate and graduate students. Enrollment limited to 24. Students must apply for the class by filling out the form at https://goo.gl/forms/9LSZF7lPkHadix5D3. A permission code will be given to admitted students to register for the class.
Terms: Aut | Units: 3-5 | Repeatable for credit

EARTHSYS 164: Introduction to Physical Oceanography (CEE 162D, CEE 262D, ESS 148)

An introduction to what causes the motions in the oceans. Topics include: the physical environment of the ocean; properties of sea water; atmosphere-ocean interactions; conservation of heat, salt, mass, and momentum, geostrophic flows, wind-driven circulation patterns; the Gulf Stream; equatorial dynamics and El Nino; and tides. By the end of the course, students will have physical intuition for why ocean currents look the way they do and a basic mathematical framework for quantifying the motions. Prerequisite: PHYSICS 41
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: ; Fong, D. (PI); Aiu, K. (TA)

EARTHSYS 165: Sustainable Transportation: Policy and Planning in Practice (URBANST 165)

The transportation network is an essential, if often invisible, part of communities. Only when traffic piles up, the subway shuts down, or the sidewalk is closed do we notice the services and infrastructure that are critical to everyday movement. Beyond the everyday effects, transportation planning decisions also have long term consequences for the environment (transportation is the leading source of greenhouse gas emissions in the United States); the economy (transportation is the fourth largest household expenditure after healthcare, housing, and food); and community wellbeing (traffic collisions are the leading cause of death for young people in the United States). This course will interrogate the role of transportation in fostering sustainable communities paying particular attention to how policy and planning decisions contribute to or hinder equitable access, economic vibrancy, environmental protection. Through a combination of lectures, field work, guest speakers, and real-world client projects, this course will provide an introduction to the field of transportation policy and planning. Student will learn about and get hands-on practice with topics such as bicycle and pedestrian design, safety analysis, traffic operations and modeling software, transit planning, and emerging trends such as autonomous vehicles, micromobility, and congestion pricing. (Cardinal Course certified by the Haas Center).
Terms: Win | Units: 4 | UG Reqs: GER:DB-SocSci, WAY-SI
Instructors: ; McAdam, T. (PI)

EARTHSYS 166: Building Alliances for Water Justice: Case Studies from California

What is water (in)justice? How have frontline communities come together to reveal inequities in water access and flows, advance meaningful reform, and build and sustain alliances? How do we center equity and repair in the face of drought and climate change? How do we learn to be good allies for water equity? This class will provide a nuanced examination of water injustice and justice by examining historical foundations, inequities in governance and distribution, and pathways toward restoration, repair, and water rights reform for justice. We will anchor our learning in three California-based modules where Indigenous and frontline communities have built powerful alliances for water equity and reform: 1) access to safe drinking water as a human right, 2) protecting in-stream flows and tribal beneficial uses of water in the face of large-scale water exports and diversions, and 3) dam removal for ecological and cultural restoration. Each module will include issue framing and readings from a multidisciplinary instructor team working from an allied perspective, a panel conversation with frontline community leaders for Indigenous rights and environmental justice, and student-led readings and discussions. By grounding our learning in dialogue with frontline community leaders who are reshaping the legal, political, and eco-cultural landscapes for water justice in California, we seek to question dominant frameworks of "community vulnerability," learn from the lived experience of individuals and organizations building meaningful alliances for justice, and begin to anticipate a wide array of legal, policy, organizing, and institution building strategies for reform.
Terms: Spr | Units: 1-3

EARTHSYS 168: Land Use: Planning for Sustainable Cities (AMSTUD 163, PUBLPOL 163, URBANST 163)

Through case studies with a focus on the San Francisco Bay Area, guest speakers, selective readings and interactive assignments, this survey course seeks to demystify the concept of land use for the non-city planner. This introductory course will review the history and trends of land use policies, as well as address a number of current themes to demonstrate the power and importance of land use. Students will explore how urban areas function, how stakeholders influence land use choices, and how land use decisions contribute to positive and negative outcomes. By exploring the contemporary history of land use in the United States, students will learn how land use has been used as a tool for discriminatory practices and NIMBYism. Students will also learn about current land use planning efforts that seek to make cities more sustainable, resilient and equitable to address issues like gentrification, affordable housing, and sea level rise.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-SocSci, WAY-SI

EARTHSYS 170: Where the Wild Things Are: The Ecology and Ethics of Conserving Megafauna (BIO 185, DLCL 170, EALC 170, GLOBAL 170)

Under conditions of global environmental change and mass extinction, how will humanity share the planet with wildlife? This course invites undergraduate students to consider this question under the guidance of two biologists and a literary scholar. We will engage with a range of interdisciplinary scholarship on how humans seek to study, understand, exploit, protect, and empathize with charismatic megafauna. We ask how regional differences in culture, political economy, and ecology shape conservation efforts.
Terms: Aut, Win | Units: 3 | UG Reqs: WAY-ER, WAY-SMA

EARTHSYS 177C: Environmental Journalism (COMM 177C, COMM 277C, EARTHSYS 277C)

Practical, collaborative, hands-on exploration of environmental journalism as an agent of change. Students learn how to identify and execute engaging and impactful stories about environmental science, policy, and justice through critique of environmental journalism pieces and extensive workshopping of each other's work. Emphasis on a just transition to climate adaptation and mitigation through elevating marginalized voices by using the tools and practices of journalism to spur positive change. Limited class size, preference to Environmental Communication and Journalism MA students. Prerequisite: EARTHSYS 191/291, COMM 104W, or consent of instructor. Admission by application only (https://forms.gle/C84WQRqbTFtuEfM49). Email instructor Chloe Peterson-Nafziger with any questions; chloepn.biosphere@gmail.com. Meets Earth Systems WIM requirement. (Graduate students enroll in EARTHSYS 277C/COMM 277C for 4 units; Undergraduates enroll in 177C for 5 units.)
Terms: Win | Units: 4-5

EARTHSYS 178M: Introduction to Environmental Ethics (ETHICSOC 178M, ETHICSOC 278M, PHIL 178M, PHIL 278M, POLISCI 134L)

How should human beings interact with the natural world? Do we have moral obligations toward non-human animals and other parts of nature? And what do we owe to other human beings, including future generations, with respect to the environment? In this course, we will tackle ethical questions that confront us in our dealings with the natural world, looking at subjects such as: animal rights; conservation; economic approaches to the environment; access to and control over natural resources; environmental justice and pollution; climate change; technology and the environment; and environmental activism. We will frame our inquiry with leading ethical theories and divide our approach to these topics by ecosystem, dedicating time to each unique environment and its specific nuances: aquatic, desert/tundra, forest/grassland, and the increasingly recognized environment of Space.
Terms: Win | Units: 4-5 | UG Reqs: GER:EC-EthicReas, WAY-ER

EARTHSYS 179: The Science & Practice of Valuing Nature for a Better World (BIO 179, BIO 279, EARTHSYS 279)

This course explores the science of valuing nature, through two interwoven pathways. One is biophysical, focused on human dependence and impacts on Earth's life-support systems. If well managed, lands, waters, and biodiversity yield a flow of vital benefits that sustain and fulfill human life. We will develop a framework and practical tools for quantifying this stream of benefits from nature to people. The second pathway is social, economic, and philosophical, weaving through concepts of well-being, human development, and conservation and the ethics and effects of their pursuit. We will look back, ahead into the future, and inward, taking a global view and considering diverse cultural perspectives. Our discussions will be situated in the context of the COVID-19 pandemic, movements for racial justice and socioeconomic equity, and efforts to enable people and nature to thrive in cities and countries worldwide. The course is intended for diverse, advanced students, with interests in research and in moving from science to action for a more just and sustainable world. Prerequisite: Basic to intermediate GIS (Geographic Information Systems) skills are necessary. We will help with these, but not teach GIS specifically in class. Basic skills include, for example: working with raster, vector and tabular data; loading rasters, shapefiles, and tables into a GIS; changing the symbology of rasters and shapefiles in your chosen GIS; editing raster and shapefile attribute tables; understanding coordinate systems and how to re-project layers; looking at individual raster cell values; and performing basic raster math.
Terms: Aut | Units: 1-3

EARTHSYS 181: Urban Agroecology (EARTHSYS 281, ESS 181, ESS 281, URBANST 181)

Urban agriculture takes many forms in cities around the world and provides significant amounts of food and other resources and benefits for urban communities. This Earth Systems practicum explores the application of agroecological principles to the design and stewardship of urban farms and gardens. Students will explore social and ecological dimensions of urban agriculture including issues of environmental justice while gaining land stewardship and small-scale food production skills at the Stanford Educational Farm and in the community. Course application link: https://stanforduniversity.qualtrics.com/jfe/form/SV_d0fFbVV7Gk7UDr0
Terms: Spr | Units: 3

EARTHSYS 183: Adaptation (ESS 185)

Adaptation is the process by which organisms or societies become better suited to their environments. In this class, we will explore three distinct but related notions of adaptation. Biological adaptations arise through natural selection, while cultural adaptations arise from a variety of processes, some of which closely resemble natural selection. A newer notion of adaptation has emerged in the context of climate change where adaptation takes on a highly instrumental, and often planned, quality as a response to the negative impacts of environmental change. We will discuss each of these ideas, using their commonalities and subtle differences to develop a broader understanding of the dynamic interplay between people and their environments. Topics covered will include, among others: evolution, natural selection, levels of selection, formal models of cultural evolution, replicator dynamics, resilience, rationality and its limits, complexity, adaptive management.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA

EARTHSYS 185: Feeding Nine Billion

Feeding a growing and wealthier population is a huge task, and one with implications for many aspects of society and the environment. There are many tough choices to be made- on fertilizers, groundwater pumping, pesticide use, organics, genetic modification, etc. Unfortunately, many people form strong opinions about these issues before understanding some of the basics of how food is grown, such as how most farmers currently manage their fields, and their reasons for doing so. The goal of this class is to present an overview of global agriculture, and the tradeoffs involved with different practices. Students will develop two key knowledge bases: basic principles of crop ecology and agronomy, and familiarity with the scale of the global food system. The last few weeks of the course will be devoted to building on this knowledge base to evaluate different future directions for agriculture.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR

EARTHSYS 191: Concepts in Environmental Communication (EARTHSYS 291)

Introduction to the history, development, and current state of communication of environmental science and policy to non-specialist audiences. Includes fundamental principles, core competencies, and major challenges of effective environmental communication in the public and policy realms and an overview of the current scope of research and practice in environmental communication. Intended for graduate students and advanced undergraduates, with a background in Earth or environmental science and/or policy studies, or in communication or journalism studies with a specific interest in environmental and science communication. Prerequisite: Earth Systems core (EarthSys 111 and EarthSys 112) or equivalent. (Meets Earth Systems WIM requirement.)
Terms: Aut | Units: 3
Instructors: ; Hayden, T. (PI); Chin, K. (TA)

EARTHSYS 194: Introduction to Environmental Justice: Race, Class, Gender and Place (ENVRES 223)

This course examines the rhetoric, history and key case studies of environmental justice while encouraging critical and collaborative thinking, reading and researching about diversity in environmental movements within the global community and at Stanford, including the ways race, class and gender have shaped environmental battles still being fought today. We center diverse voices by bringing leaders, particularly from marginalized communities on the frontlines to our classroom to communicate experiences, insights and best practices. Together we will develop and present original research projects which may serve a particular organizational or community need, such as racialized dispossession, toxic pollution and human health, or indigenous land and water rights, among many others. Cardinal Course certified by the Haas Center for Public Service. On Mondays, we will meet for discussion-based seminars and small group activities. On Wednesdays, Intro to EJ students will attend lectures presented by leading EJ scholars and advocates through the Environmental Justice Colloquium (EARTHSYS 194A).
Terms: Aut | Units: 4 | UG Reqs: WAY-EDP, WAY-SI

EARTHSYS 194A: Environmental Justice Colloquium (HUMRTS 194A, URBANST 155A)

This colloquium brings the voices and vision of leading Environmental Justice (EJ) advocates to the Stanford community, in order to educate, inspire, and transform our understanding of environmental science. Environmental Justice advances a positive vision for policies and actions that fight environmental racism. EJ approaches involve centering the voices and leadership of marginalized communities in 1) ensuring equitable access to environmental benefits, and 2) preventing or mitigating the disproportionate impacts of environmental harms for all communities, regardless of gender, class, race, ethnicity, or other social positions. This colloquium highlights the work of leading EJ thinkers and practitioners, speaking from frontline organizations on a wide range of topics. These topics include acting on toxic exposures and health disparities for community resilience, climate justice and youth action, Indigenous land and water rights, green cities and Afrofuturism, food justice and intersecting social movements, queer ecologies, and more. The colloquium will host a weekly speaker with course meetings held every Wednesday. Colloquium presentations will begin promptly at 12pm.
Terms: Aut | Units: 1 | Repeatable 3 times (up to 3 units total)
Instructors: ; Diver, S. (PI)

EARTHSYS 197: Directed Individual Study in Earth Systems

Under supervision of an Earth Systems faculty member on a subject of mutual interest.
Terms: Aut, Win, Spr | Units: 1-9 | Repeatable for credit

EARTHSYS 199: Honors Program in Earth Systems

Honors Program in Earth Systems
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit

EARTHSYS 199A: Earth Systems Honors Workshop

This course comprises a series of four writing workshops (2 in fall, 1 each in winter and spring quarters) required for seniors in the Earth Systems Honors Program. Workshops foster a supportive community among the Earth Systems Honors cohort and assist students at each stage of the thesis research and writing process. This workshop series provides guidance in planning and structuring the undergraduate honors thesis, cultivating effective writing habits, embracing an interdisciplinary research approach, and crafting thesis sections. Students also acquire skills in designing visuals, charts, and graphs to effectively communicate research findings.
Terms: Aut | Units: 1
Instructors: ; Nevle, R. (PI)

EARTHSYS 205A: Fundamentals of Geobiology (EPS 205, ESS 205)

(Former GEOLSCI 205) Lecture and discussion covering key topics in the history of life on Earth, as well as basic principles that apply to life in the universe. Co-evolution of Earth and life; critical intervals of environmental and biological change; geomicrobiology; paleobiology; global biogeochemical cycles; scaling of geobiological processes in space and time. Change of Department Name: Earth & Planetary Sciences (Formerly Geological Science)
Terms: Aut | Units: 3

EARTHSYS 206: World Food Economy (EARTHSYS 106, ECON 106, ECON 206, ESS 106, ESS 206)

The World Food Economy is a survey course that covers the economic and political dimensions of food production, consumption, and trade. The course focuses on food markets and food policy within a global context. It is comprised of three major sections: structural features (agronomic, technological, and economic) that determine the nature of domestic food systems; the role of domestic food and agricultural policies in international markets; and the integrating forces of international research, trade, and food aid in the world food economy. This 5-unit course entails a substantial group modeling project that is required for all students. Enrollment is by application only. The application is found at https://economics.stanford.edu/undergraduate/forms. Applications will be reviewed on a first-come, first-serve basis, and priority will be given to upper-level undergraduates who need the course for their major, and to graduate students pursuing work directly related to the course. The application submission period will close on March 15
Terms: Spr | Units: 5

EARTHSYS 209: Rethinking Meat: An Introduction to Alternative Proteins (EARTHSYS 109, ESS 103, ESS 203, ETHICSOC 107)

How do we feed a growing population in the face of climate change? Will Impossible Burgers become the new norm? Are you curious to learn about a frontier in bio- and chemical-engineering? Are you passionate about animal rights, human health, and sustainable agriculture? Learn about the environmental, ethical, and economic drivers behind the market for meat replacements. We'll take a deep dive into the science and technology used to develop emerging plant, fermentation and cell-based meat alternatives and explore the political challenges and behavioral adaptation needed to decrease meat consumption. Hear from entrepreneurs, researchers, and innovative startups developing sustainable and marketable alternative proteins through weekly guest lectures from industry leaders.
Terms: Spr | Units: 1-2

EARTHSYS 210A: Senior Capstone and Reflection

The Earth Systems Senior Capstone and Reflection, required of all seniors, provides students with opportunities to synthesize and reflect on their learning in the major. Students participate in guided career development and planning activities and initiate work on an independent or group capstone project related to an Earth Systems problem or question of interest. In addition, students learn and apply principles of effective oral communication through developing and giving a formal presentation on their internship. Students must also take EARTHSYS 210P, Earth Systems Capstone Project, in the quarter following the Senior Capstone and Reflection Course. Prerequisite: Completion of an approved Earth Systems internship (EARTHSYS 260). Cardinal Course certified by the Haas Center for Public Service.
Terms: Aut | Units: 3

EARTHSYS 210B: Senior Capstone and Reflection

The Earth Systems Senior Capstone and Reflection, required of all seniors, provides students with opportunities to synthesize and reflect on their learning in the major. Students participate in guided career development and planning activities and initiate work on an independent or group capstone project related to an Earth Systems problem or question of interest. In addition, students learn and apply principles of effective oral communication through developing and giving a formal presentation on their internship. Students must also take EARTHSYS 210P, Earth Systems Capstone Project, in the quarter following the Senior Capstone and Reflection Course. Prerequisite: Completion of an approved Earth Systems internship (EARTHSYS 260).https://earth.stanford.edu/esys/resources/program-forms-guides
Terms: Win | Units: 3
Instructors: ; Nevle, R. (PI)

EARTHSYS 210P: Earth Systems Capstone Project

Students work independently or in groups to complete their Senior Capstone Projects. They will participate in regular advising meetings with the instructor(s), and will give a final presentation on their projects at the end of the quarter in a special Earth Systems symposium. Prerequisite: EARTHSYS 210A or 210B.https://earth.stanford.edu/esys/resources/program-forms-guides
Terms: Win, Spr | Units: 2

EARTHSYS 212: Human Society and Environmental Change (EARTHSYS 112, ESS 112, HISTORY 103D)

Interdisciplinary approaches to understanding human-environment interactions with a focus on economics, policy, culture, history, and the role of the state. Prerequisite: ECON 1.
Terms: Aut | Units: 4

EARTHSYS 213: Hacking for Climate and Sustainability

The challenges of addressing climate change and sustainability require urgency as well as innovative solutions. Startups operate with speed and urgency, 24/7. In recent years they have learned not only how to effectively innovate but also how to be extremely efficient with resources and time, using lean startup methods. Participants in this class develop the skills required of a mission driven entrepreneur by tackling a critical problem in climate and sustainability as part of a team of engineers, scientists, social scientists, MBAs, and law and policy experts. Teams will engage pressing climate and sustainability problems and learn how to apply lean startup principles ("business model canvas," "customer development," and "agile engineering") in developing solutions. Students will take a hands-on, experiential approach to explore options for solutions and needs for stakeholders. The process of exploring options will require participants to engage deeply and to learn how to work closely with policy makers, technologists, government officials, NGOs, foundations, companies, and others interested in solving these problems, while demanding that teams continually build iterative prototypes to test their understanding of the problem and solution hypotheses. For more information on problems and sponsors as they are added and to apply for the course, see https://h4cs.stanford.edu/. Applications required in November. Limited enrollment.https://earth.stanford.edu/esys/resources/program-forms-guides
Terms: Win | Units: 3

EARTHSYS 214: Global Change and Emerging Infectious Disease (EARTHSYS 114, ESS 213, HUMBIO 114)

The changing epidemiological environment. How human-induced environmental changes, such as global warming, deforestation and land-use conversion, urbanization, international commerce, and human migration, are altering the ecology of infectious disease transmission, and promoting their re-emergence as a global public health threat. Case studies of malaria, cholera, hantavirus, plague, and HIV.
Terms: Spr | Units: 3
Instructors: ; Jones, J. (PI)

EARTHSYS 217: Biology and Global Change (BIO 117, EARTHSYS 111, ESS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or BIO 81 or graduate standing.
Terms: Win | Units: 4

EARTHSYS 220: Environmental Justice in California (EARTHSYS 120)

Although California is considered a National policy leader in environmental justice, communities across the state struggle for basic environmental rights. Through lectures, readings, and field trips, this course will analyze this contradiction by examining the development of environmental justice movements and environmental justice policy in California. The course will explore how California's political, social, and economic histories inform environmental justice struggles. We will study specific and intersecting challenges facing African American, Indigenous, Latinx, and AAPI communities. This course will include an introduction to theories, such as de-growth and Municipalism, applied in strategies for environmental justice; as well as, analyses of topics ranging from agricultural labor, incarceration, extractive industries, and environmental justice in Silicon Valley.
Terms: Win | Units: 3

EARTHSYS 223: Biosphere-Atmosphere Interactions (EARTHSYS 123A, ESS 123, ESS 223)

How do ecosystems respond to climate change, and how can ecosystems affect climate? This course describes, quantitatively and qualitatively, the different feedback mechanisms between the land surface and climate at both local and global scales. We will also discuss how these processes can be modelled and measured across earth's diverse ecosystems, and how they affect prospects for nature-based climate solutions. Basic familiarity with programming is helpful.
Terms: Win | Units: 3-4

EARTHSYS 225: Shades of Green: Exploring and Expanding Environmental Justice in Practice (CSRE 125E, EARTHSYS 125, URBANST 125)

Historically, discussions of race, ethnicity, culture, and equity in the environment have been shaped by a limited view of the environmental justice movement, often centered on urban environmental threats and separated from other types of environmental and climate advocacy. This course will seek to expand on these discussions by exploring topics such as access to outdoor spaces, definitions of wilderness, inclusion in environmental organizations, gender and the outdoors, the influence of colonialism on ways of knowing, food justice and ethics, and the future of climate change policy. The course will also involve a community partnership project. In small groups students will work with an environmental organization to problem-solve around issues of equity, representation, and access. We value a diversity of experiences and epistemologies and welcome undergraduates from all disciplines. Since this is a practical course, there will be a strong emphasis on participation and commitment to community partnerships. This course requires instructor approval, please submit an application by March 5th at midnight. Application available at https://forms.gle/2kRJFRyfwopWcBeT9
Terms: Spr | Units: 3-4

EARTHSYS 227: Decision Science for Environmental Threats (ESS 227)

Decision science is the study of how people make decisions. It aims to describe these processes in ways that will help people make better or more well-informed decisions. It is an interdisciplinary field that draws upon psychology, economics, political science, and management, among other disciplines. It is being used in a number of domain areas and for a variety of applications, including managing freshwater resources, designing decision support tools to aid in coastal adaptation to sea-level rise, and creating "nudges" to enhance energy efficiency behaviors. This course covers behavioral theories of probabilistic inference, intuitive prediction, preference, and decision making. Topics include heuristics and biases, risk perceptions and attitudes, strategies for combining different sources of information and dealing with conflicting objectives, and the roles of group and emotional processes in decision making. This course will introduce students to foundational theories of decision science, and will involve applying these theories to understand decisions about environmental threats.
Terms: Aut | Units: 3-5

EARTHSYS 233: Mitigating Climate Change through Soil Management (ESS 233)

Climate change is one of the greatest crises facing our world. Increasing soil organic carbon storage may be a key strategy for mitigating global climate change, with the potential to offset approximately 20% of annual global fossil fuel emissions. In this course, we will learn about soil carbon cycling, its contribution to the global carbon cycle, how carbon is stored in soil, and land management practices that can increase or decrease soil carbon stocks, thereby mitigating or exacerbating climate change. Although the content is centered on soil carbon, the processes and skills learned in this course can be applied to design solutions to any environmental problem.Prerequisites: Some knowledge of soils, introductory chemistry, and introductory biology would be useful but not necessary. Please email the instructor if you have any concerns or questions.
Terms: Spr | Units: 3
Instructors: ; Hoyt, A. (PI)

EARTHSYS 240: Data Science for Geoscience (EARTHSYS 140, ENERGY 240, EPS 140, EPS 240, ESS 239)

(Formerly GEOLSCI 140 and 240) Overview of some of the most important data science methods (statistics, machine learning & computer vision) relevant for geological sciences, as well as other fields in the Earth Sciences. Areas covered are: extreme value statistics for predicting rare events; compositional data analysis for geochemistry; multivariate analysis for designing data & computer experiments; probabilistic aggregation of evidence for spatial mapping; functional data analysis for multivariate environmental datasets, spatial regression and modeling spatial uncertainty with covariate information (geostatistics). Identification & learning of geo-objects with computer vision. Focus on practicality rather than theory. Matlab exercises on realistic data problems. Change of Department Name: Earth and Planetary Science (Formerly Geologic Sciences).
Terms: Win | Units: 3
Instructors: ; Caers, J. (PI); Lathi, P. (TA)

EARTHSYS 241: Remote Sensing of the Oceans (EARTHSYS 141, ESS 141, ESS 241, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4
Instructors: ; Arrigo, K. (PI)

EARTHSYS 242: Remote Sensing of Land (EARTHSYS 142, ESS 162, ESS 262)

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Terms: Spr | Units: 3

EARTHSYS 249: Wild Writing (EARTHSYS 149)

What is the wild? What is our relationship to nature, and why does this relationship matter? We will interrogate these questions through the work of influential, diverse, primarily American environmental writers who have given voice to many ways of knowing the wonder, fragility, complexity, and power of the natural world and have inspired readers to act on behalf of social-environmental causes. This course centers the work of diverse voices, including Indigenous, Black, and Chicana writers, enabling us to consider some of the many ways that people have understood and experienced nature throughout history and the relevance of these manifold ways of knowing to our conceptualizations of nature today. Students will develop their responses to the question of what is the wild and why it matters through a series of synchronous and asynchronous in-the-field writing exercises that integrate personal narrative and environmental scholarship, culminating in a ~3000-word narrative nonfiction essay. This course will provide students with knowledge, tools, experience, and skills that will empower them to become more persuasive environmental storytellers and advocates.If you are interested in signing up for the course, complete this pre-registration form:https://stanforduniversity.qualtrics.com/jfe/form/SV_9XqZeZs036WIvop
Terms: Spr | Units: 3

EARTHSYS 250: Directed Research

Independent research. Student develops own project with faculty supervision. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit
Instructors: ; Ardoin, N. (PI); Arrigo, K. (PI); Asner, G. (PI); Ball, J. (PI); Benson, S. (PI); Block, B. (PI); Boggs, C. (PI); Boucher, A. (PI); Cain, B. (PI); Caldwell, M. (PI); Carlisle, L. (PI); Casciotti, K. (PI); Chamberlain, P. (PI); Crowder, L. (PI); Curran, L. (PI); Daily, G. (PI); Davis, J. (PI); Denny, M. (PI); Diffenbaugh, N. (PI); Dirzo, R. (PI); Dunbar, R. (PI); Durham, W. (PI); Egger, A. (PI); Ehrlich, P. (PI); Ernst, W. (PI); Fendorf, S. (PI); Field, C. (PI); Francis, C. (PI); Frank, Z. (PI); Freyberg, D. (PI); Fukami, T. (PI); Gardner, C. (PI); Gerritsen, M. (PI); Gilly, W. (PI); Gordon, D. (PI); Gorelick, S. (PI); Goulder, L. (PI); Hadly, E. (PI); Hayden, T. (PI); Hilley, G. (PI); Hoagland, S. (PI); Ingle, J. (PI); Jamieson, A. (PI); Jones, J. (PI); Kennedy, D. (PI); Kennedy, J. (PI); Knight, R. (PI); Konings, A. (PI); Koseff, J. (PI); Kovscek, A. (PI); Lambin, E. (PI); Litvak, L. (PI); Lobell, D. (PI); Long, S. (PI); Lynham, J. (PI); Masters, G. (PI); Matson, P. (PI); Micheli, F. (PI); Milroy, J. (PI); Monismith, S. (PI); Mooney, H. (PI); Naylor, R. (PI); Nevle, R. (PI); O'Neill, M. (PI); Orr, F. (PI); Palumbi, S. (PI); Payne, J. (PI); Peay, K. (PI); Rajaratnam, B. (PI); Rothe, M. (PI); Schoolnik, G. (PI); Seto, K. (PI); Siegel, R. (PI); Somero, G. (PI); Sweeney, J. (PI); Switzer, P. (PI); Tabazadeh, A. (PI); Thomas, L. (PI); Thompson, B. (PI); Victor, D. (PI); Vitousek, P. (PI); Walbot, V. (PI); Wang, Y. (PI); Watanabe, J. (PI); Weyant, J. (PI); Wiederkehr, S. (PI); Wilber, C. (PI); Wong-Parodi, G. (PI); Woodward, J. (PI); Zoback, M. (PI)

EARTHSYS 251: Biological Oceanography (EARTHSYS 151, ESS 151, ESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips.
Terms: Spr | Units: 3-4
Instructors: ; Arrigo, K. (PI)

EARTHSYS 260: Internship

Supervised field, lab, or public/private sector project. May consist of directed research under the supervision of a Stanford faculty member, participation in one of several off campus Stanford programs, or an approved non-Stanford program or opportunity relevant to the student's Earth Systems studies. Required of and restricted to declared Earth Systems majors. This is a 1 unit, credit/no credit course, consisting of at least 270 hours of work. Course can be fulfilled any quarter. For more course requirements, please visit: https://earth.stanford.edu/esys/undergrad/internship
Terms: Aut, Win, Spr, Sum | Units: 1
Instructors: ; Hoagland, S. (PI)

EARTHSYS 262: Data for Sustainable Development (CS 325B, EARTHSYS 162)

The sustainable development goals (SDGs) encompass many important aspects of human and ecosystem well-being that are traditionally difficult to measure. This project-based course will focus on ways to use inexpensive, unconventional data streams to measure outcomes relevant to SDGs, including poverty, hunger, health, governance, and economic activity. Students will apply machine learning techniques to various projects outlined at the beginning of the quarter. The main learning goals are to gain experience conducting and communicating original research. Prior knowledge of machine learning techniques, such as from CS 221, CS 229, CS 231N, STATS 202, or STATS 216 is required. Open to both undergraduate and graduate students. Enrollment limited to 24. Students must apply for the class by filling out the form at https://goo.gl/forms/9LSZF7lPkHadix5D3. A permission code will be given to admitted students to register for the class.
Terms: Aut | Units: 3-5 | Repeatable for credit

EARTHSYS 277C: Environmental Journalism (COMM 177C, COMM 277C, EARTHSYS 177C)

Practical, collaborative, hands-on exploration of environmental journalism as an agent of change. Students learn how to identify and execute engaging and impactful stories about environmental science, policy, and justice through critique of environmental journalism pieces and extensive workshopping of each other's work. Emphasis on a just transition to climate adaptation and mitigation through elevating marginalized voices by using the tools and practices of journalism to spur positive change. Limited class size, preference to Environmental Communication and Journalism MA students. Prerequisite: EARTHSYS 191/291, COMM 104W, or consent of instructor. Admission by application only (https://forms.gle/C84WQRqbTFtuEfM49). Email instructor Chloe Peterson-Nafziger with any questions; chloepn.biosphere@gmail.com. Meets Earth Systems WIM requirement. (Graduate students enroll in EARTHSYS 277C/COMM 277C for 4 units; Undergraduates enroll in 177C for 5 units.)
Terms: Win | Units: 4-5

EARTHSYS 279: The Science & Practice of Valuing Nature for a Better World (BIO 179, BIO 279, EARTHSYS 179)

This course explores the science of valuing nature, through two interwoven pathways. One is biophysical, focused on human dependence and impacts on Earth's life-support systems. If well managed, lands, waters, and biodiversity yield a flow of vital benefits that sustain and fulfill human life. We will develop a framework and practical tools for quantifying this stream of benefits from nature to people. The second pathway is social, economic, and philosophical, weaving through concepts of well-being, human development, and conservation and the ethics and effects of their pursuit. We will look back, ahead into the future, and inward, taking a global view and considering diverse cultural perspectives. Our discussions will be situated in the context of the COVID-19 pandemic, movements for racial justice and socioeconomic equity, and efforts to enable people and nature to thrive in cities and countries worldwide. The course is intended for diverse, advanced students, with interests in research and in moving from science to action for a more just and sustainable world. Prerequisite: Basic to intermediate GIS (Geographic Information Systems) skills are necessary. We will help with these, but not teach GIS specifically in class. Basic skills include, for example: working with raster, vector and tabular data; loading rasters, shapefiles, and tables into a GIS; changing the symbology of rasters and shapefiles in your chosen GIS; editing raster and shapefile attribute tables; understanding coordinate systems and how to re-project layers; looking at individual raster cell values; and performing basic raster math.
Terms: Aut | Units: 1-3

EARTHSYS 281: Urban Agroecology (EARTHSYS 181, ESS 181, ESS 281, URBANST 181)

Urban agriculture takes many forms in cities around the world and provides significant amounts of food and other resources and benefits for urban communities. This Earth Systems practicum explores the application of agroecological principles to the design and stewardship of urban farms and gardens. Students will explore social and ecological dimensions of urban agriculture including issues of environmental justice while gaining land stewardship and small-scale food production skills at the Stanford Educational Farm and in the community. Course application link: https://stanforduniversity.qualtrics.com/jfe/form/SV_d0fFbVV7Gk7UDr0
Terms: Spr | Units: 3

EARTHSYS 290: Master's Seminar

Required of and open only to Earth Systems co-terminal MS and MA students. This course has several elements, including, skill building through experiential learning and reflection and professional development. Students will either work in teams with a community partner in the Bay area on a predetermined project, or select a self- designed project with a partner anywhere in the world. The idea is to complete a well-defined, manageable, but important project to a high standard under significant time constraints. Our community partners have requested help with achieving their missions and seminar students will utilize their backgrounds in social/environmental problem solving to deliver a final product. Our partners have requested help with such efforts as grant and report writing, data analysis, curriculum development, symposium organizing, presentation research and preparation and communications to raise awareness about an environmental challenge. If you choose to design your own project, the instructor will help you to create this opportunity. Students will give oral presentations on their project progress throughout the quarter, culminating in a final presentation at a symposium with our partners. Students will also explore how best to communicate their interdisciplinary skills and goals through their resumes, CV's or cover letters, portfolios or linkedIn profiles in preparation for the next phase of their career. Guest speakers and in class workshops will complement these activities.Cardinal Course certified by the Haas Center.
Terms: Aut, Win | Units: 3

EARTHSYS 291: Concepts in Environmental Communication (EARTHSYS 191)

Introduction to the history, development, and current state of communication of environmental science and policy to non-specialist audiences. Includes fundamental principles, core competencies, and major challenges of effective environmental communication in the public and policy realms and an overview of the current scope of research and practice in environmental communication. Intended for graduate students and advanced undergraduates, with a background in Earth or environmental science and/or policy studies, or in communication or journalism studies with a specific interest in environmental and science communication. Prerequisite: Earth Systems core (EarthSys 111 and EarthSys 112) or equivalent. (Meets Earth Systems WIM requirement.)
Terms: Aut | Units: 3
Instructors: ; Hayden, T. (PI); Chin, K. (TA)

EARTHSYS 292: Multimedia Environmental Communication

Introductory theory and practice of environmental storytelling through photography, video, and audio production. Interactive seminar to cultivate effective use of photography, audio, and video production technology and software to communicate environmental science, policy, and justice concepts to the public in compelling, accurate, and engaging ways. Emphasis on fundamental storytelling techniques and workflow more than technical specifics of multimedia gear. Includes extensive instructor and peer workshopping/critiquing of work and substantial out-of-class group project work. Limited class size, preference to Environmental Communication MA students. No previous multimedia experience necessary. Admission by application only (https://forms.gle/UU7Va8cYVSW7u1oY6). Email instructor Chloe Peterson-Nafziger with any questions; chloepn.biosphere@gmail.com.
Terms: Aut | Units: 3

EARTHSYS 293: Environmental Communication Practicum

Students complete an internship or similar practical experience in a professional environmental communication setting. Potential placements include environmental publications, environmental or outdoor education placements, NGOs, government agencies, on-campus departments, programs, or centers, and science centers and museums. Restricted to students admitted to the Earth Systems Master of Arts, Environmental Communication Program. Can be completed in any quarter.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit
Instructors: ; Hayden, T. (PI)

EARTHSYS 294: Environmental Communication Capstone

The Earth Systems Master of Arts, Environmental Communication capstone project provides students with an opportunity to complete an ambitious independent project demonstrating mastery of an area of environmental communication. Capstone projects are most often applied communication projects such as writing, photography, or video projects; expressive or artistic works; or student-initiated courses, workshops, or curriculum materials. Projects focused on academic scholarship or communication theory research may also be considered. Restricted to students enrolled in the Earth Systems Master of Arts, Environmental Communication Program.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

EARTHSYS 295: Environmental Communication Seminar

Weekly seminar for students enrolled in the Earth Systems Master of Arts, Environmental Communication Program, to be taken twice for credit during degree progress. Includes discussion of and reflection on current topics in environmental communication, skills and professional development workshop sessions, and mentoring and peer support for MA capstone projects.
Terms: Aut, Spr | Units: 1 | Repeatable 2 times (up to 2 units total)
Instructors: ; Hayden, T. (PI)

EARTHSYS 297: Directed Individual Study in Earth Systems

Under supervision of an Earth Systems faculty member on a subject of mutual interest.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit
Instructors: ; Anderson, M. (PI); Archie, P. (PI); Ardoin, N. (PI); Arrigo, K. (PI); Asner, G. (PI); Banerjee, B. (PI); Barry, M. (PI); Block, B. (PI); Boggs, C. (PI); Boucher, A. (PI); Cain, B. (PI); Caldeira, K. (PI); Caldwell, M. (PI); Carlisle, L. (PI); Casciotti, K. (PI); Chamberlain, P. (PI); Curran, L. (PI); Daily, G. (PI); Davis, J. (PI); Denny, M. (PI); Diffenbaugh, N. (PI); Dirzo, R. (PI); Diver, S. (PI); Dunbar, R. (PI); Durham, W. (PI); Egger, A. (PI); Ernst, W. (PI); Fendorf, S. (PI); Field, C. (PI); Francis, C. (PI); Frank, Z. (PI); Freyberg, D. (PI); Fukami, T. (PI); Gardner, C. (PI); Gerritsen, M. (PI); Gilly, W. (PI); Gordon, D. (PI); Gorelick, S. (PI); Goulder, L. (PI); Hadly, E. (PI); Hawk, S. (PI); Hayden, T. (PI); Hecker, S. (PI); Hilley, G. (PI); Hoagland, S. (PI); Ihme, M. (PI); Ingle, J. (PI); Jackson, R. (PI); Jacobson, M. (PI); Jamieson, A. (PI); Jones, J. (PI); Kennedy, D. (PI); Kennedy, J. (PI); Knight, R. (PI); Koseff, J. (PI); Kovscek, A. (PI); Lambin, E. (PI); Lawrence, K. (PI); Litvak, L. (PI); Lobell, D. (PI); Long, S. (PI); Lutomski, P. (PI); Lynham, J. (PI); Lyons, E. (PI); Maples, S. (PI); Masters, G. (PI); Matson, P. (PI); Micheli, F. (PI); Monismith, S. (PI); Mooney, H. (PI); Mormann, F. (PI); Naylor, R. (PI); Nelson, J. (PI); Nevle, R. (PI); Novy, J. (PI); Orr, F. (PI); Ortolano, L. (PI); Osborne, M. (PI); Palumbi, S. (PI); Payne, J. (PI); Peterson-Nafziger, C. (PI); Phillips, K. (PI); Polk, E. (PI); Rajaratnam, B. (PI); Rothe, M. (PI); Saltzman, J. (PI); Schoolnik, G. (PI); Seiger, A. (PI); Seto, K. (PI); Shiv, B. (PI); Siegel, R. (PI); Simon, G. (PI); Smith, A. (PI); Somero, G. (PI); Sweeney, J. (PI); Switzer, P. (PI); Tabazadeh, A. (PI); Thomas, L. (PI); Thompson, B. (PI); Truebe, S. (PI); Victor, D. (PI); Vitousek, P. (PI); Walbot, V. (PI); Watanabe, J. (PI); Weyant, J. (PI); Wiederkehr, S. (PI); Wight, G. (PI); Wolak, F. (PI); Woodward, J. (PI); Zoback, M. (PI)

EARTHSYS 301: Curricular Practical Training - CPT

CPT course required for international students completing degree.
Terms: Spr, Sum | Units: 1-3 | Repeatable 3 times (up to 9 units total)
Instructors: ; Hoagland, S. (PI)

EARTHSYS 308: Carbon Dioxide and Methane Removal, Utilization, and Sequestration (ENERGY 308, ENVRES 295, ESS 308, ME 308)

This is a seminar on carbon dioxide and methane removal, utilization, and sequestration options, and their role in decarbonizing the global energy system. This course will cover topics including the global carbon balance, utilizing atmospheric carbon in engineered solutions, recycling and sequestering fossil-based carbon, and enhancing natural carbon sinks. The multidisciplinary lectures and discussions will cover elements of technology, economics, policy and social acceptance, and will be led by a series of guest lecturers.
Terms: Aut | Units: 1

EARTHSYS 323: Stanford at Sea (BIO 182H, BIO 323H, ESS 323, OCEANS 182H, OCEANS 323H)

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Terms: Spr | Units: 16 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 330B: Quest for an Inclusive Clean Energy Economy (CEE 130B, CEE 330B, EARTHSYS 130B)

Building bridges across the clean energy divide involves addressing barriers to participation. These barriers affect the pace of investment, especially for distributed energy solutions such as building energy upgrades, on-site solar, and transportation electrification. This course will explore innovative business models that are responsive to calls for equity and inclusion, and it will give special attention to California's ongoing clean energy finance rulemaking in the utility sector to open the clean energy economy for all.
Terms: Win | Units: 3-4
© Stanford University | Terms of Use | Copyright Complaints