Print Settings
 

GS 1A: Introduction to Geology: The Physical Science of the Earth

For non-majors or prospective majors in the Earth Sciences. Lectures, hands-on laboratories, in-class activities, and one field trip. Focus is on the physical and chemical processes of heat and mass transfer within the earth and its fluid envelopes, including deep-earth, crustal, surface, and atmospheric processes. Topics include plate tectonics, the cycling and formation of different types of rocks, and how geologists use rocks to understand Earth's history. Only one of GS 1A, 1B, or 1C may be taken for credit.
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

GS 1B: Introduction to Geology

For non-majors and prospective majors or minors in the Earth Sciences. Introduction to physical geology. Lectures and lab exercises focus on understanding the dynamics of Earth¿s ongoing physical and chemical processes. Major themes include plate tectonics, the rock cycle, the hydrologic cycle, and mineral resources. We will employ local CA geology, current events, and the state-of-the-art to drive discussions on landscapes, hazards, and economics. Only one of GS 1A, 1B, or 1C may be taken for credit. Recommended: high school chemistry.
| Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

GS 1C: Introduction to Geology: Dynamic Earth

For non-majors or prospective majors in the Earth Sciences. Integrated lecture-lab includes hands-on activities and local field trips. Focus is on reading the dynamic geological landscape, with an emphasis on California-primarily Bay Area-geology. Topics include plate tectonics, earthquakes and volcanoes, Earth materials, geologic time, stream processes, and climate change over geologic time. Only one of GS 1A, 1B, or 1C may be taken for credit.
| Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

GS 4: How to Build and Maintain a Habitable Planet: An Introduction to Earth System History (EARTHSYS 4)

Introduction to the history of the Earth, with a focus on processes that maintain or threaten habitability. Principles of stratigraphy, correlation, the geological timescale, the history of biodiversity, and the interpretation of fossils. The use of data from sedimentary geology, geochemistry, and paleontology to test theories for critical events in Earth history such as mass extinctions. One half-day field trip.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

GS 5: Living on the Edge (EARTH 15)

A weekend field trip along the Pacific Coast. Tour local beaches, geology, and landforms with expert guides from the Department of Geological and Environmental Sciences. Enjoy a BBQ dinner and stay overnight in cabins along the Santa Cruz coast. Get to know faculty and graduate students in the Earth Sciences. Requirements: Two campus meeting and weekend field trip to Pacific Coast. Enrollment limited to 25. Freshman have first choice.
Terms: Aut, Spr | Units: 1

GS 8: Oceanography: An Introduction to the Marine Environment

For non-majors and earth science and environmental majors. Topics: topography and geology of the sea floor; evolution of ocean basins; circulation of ocean and atmosphere; nature of sea water, waves, and tides; and the history of the major ocean basins. The interface between continents and ocean basins, emphasizing estuaries, beaches, and continental shelves with California margin examples. Relationships among the distribution of inorganic constituents, ocean circulation, biologic productivity, and marine environments from deep sea to the coast. One-day field trip to measure and analyze waves and currents.
| Units: 3 | UG Reqs: GER: DB-NatSci

GS 12SC: Environmental and Geological Field Studies in the Rocky Mountains (EARTHSYS 12SC, ESS 12SC)

The ecologically and geologically diverse Rocky Mountain area is being strongly impacted by changing land use patterns, global and regional environmental change, and societal demands for energy and natural resources. This field program emphasizes coupled environmental and geological problems in the Rocky Mountains, covering a broad range of topics including the geologic origin of the American West from three billion years ago to the present; paleoclimatology and the glacial history of this mountainous region; the long- and short-term carbon cycle and global climate change; and environmental issues in the American West related to changing land-use patterns and increased demand for its abundant natural resources. In addition to the science aspects of this course we will also investigate the unique western culture of the area particularly in regards to modern ranching and outfitting in the American West. These broad topics are integrated into a coherent field-study as we examine earth/ environmental science-related questions in three different settings: 1) the three-billion-year-old rocks and the modern glaciers of the Wind River Mountains of Wyoming; 2) the sediments in the adjacent Wind River basin that host abundant gas and oil reserves and also contain the long-term climate history of this region; and 3) the volcanic center of Yellowstone National Park and the mountainous region of Teton National Park. Students will complete six assignments based upon field exercises, working in small groups to analyze data and prepare reports and maps. Lectures will be held in the field prior to and after fieldwork. Note: This course involves one week of backpacking in the Wind Rivers and hiking while staying in cabins near Jackson Hole, Wyoming. Students must arrive in Salt Lake City on Tuesday, September 6. (Hotel lodging will be provided for the night of September 6, and thereafter students will travel as a Sophomore College group.) We will return to campus on Friday, September 23. Sophomore College Course: Application required, due noon, April 5, 2016. Apply at http://soco.stanford.edu.
Terms: Sum | Units: 2
Instructors: ; Chamberlain, P. (PI)

GS 14: Our National Parks (EARTH 14, EARTH 114A, GS 114A)

Explore the history and natural science of three national parks proximal to Stanford. Under the guidance of instructors, students will work in teams to learn about chosen aspects of these parks, develop dynamic self-guided tours for public consumption, and implement (and publish) these tours using the XibitEd app for iPhones. Students will learn how to present their findings to a general, non-scientific audience, delineate physical locations at which storytelling will take place through the XibitEd system, and create and configure the content for the system. The course will culminate in the publishing of the experiential learning tours, as well as a weekend-long field trip to the Pinnacles National Park
Terms: Win | Units: 2

GS 38N: The Worst Journey in the World: The Science, Literature, and History of Polar Exploration (EARTHSYS 38N, ESS 38N)

This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: ; Dunbar, R. (PI)

GS 40N: Diamonds

Preference to freshmen. Topics include the history of diamonds as gemstones, prospecting and mining, and their often tragic politics. How diamond samples provide clues for geologists to understand the Earth's deep interior and the origins of the solar system. Diamond's unique materials properties and efforts in synthesizing diamonds.
| Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA

GS 42N: Landscapes and Tectonics of the San Francisco Bay Area

Active faulting and erosion in the Bay Area, and its effects upon landscapes. Earth science concepts and skills through investigation of the valley, mountain, and coastal areas around Stanford. Faulting associated with the San Andreas Fault, coastal processes along the San Mateo coast, uplift of the mountains by plate tectonic processes, and landsliding in urban and mountainous areas. Field excursions; student projects.
Terms: Aut | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA
Instructors: ; Hilley, G. (PI); Liu, F. (TA)

GS 43Q: Environmental Problems

Preference to sophomores. Components of multidisciplinary environmental problems and ethical questions associated with decision making in the regulatory arena. Students lead discussions on environmental issues such as groundwater contamination from point and nonpoint sources, cumulative watershed effects related to timber and mining practices, acid rain, and subsurface disposal of nuclear waste.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: ; Loague, K. (PI)

GS 46Q: Environmental Impact of Energy Systems: What are the Risks? (EARTHSYS 46Q)

In order to reduce CO2 emissions and meet growing energy demands during the 21st Century, the world can expect to experience major shifts in the types and proportions of energy-producing systems. These decisions will depend on considerations of cost per energy unit, resource availability, and unique national policy needs. Less often considered is the environmental impact of the different energy producing systems: fossil fuels, nuclear, wind, solar, and other alternatives. One of the challenges has been not only to evaluate the environmental impact but also to develop a systematic basis for comparison of environmental impact among the energy sources. The course will consider fossil fuels (natural gas, petroleum and coal), nuclear power, wind and solar and consider the impact of resource extraction, refining and production, transmission and utilization for each energy source.
Terms: Win | Units: 3

GS 55Q: The California Gold Rush: Geologic Background and Environmental Impact

Preference to sophomores. Topics include: geologic processes that led to the concentration of gold in the river gravels and rocks of the Mother Lode region of California; and environmental impact of the Gold Rush due to population increase, mining operations, and high concentrations of arsenic and mercury in sediments from hard rock mining and milling operations. Recommended: introductory geology.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA, Writing 2

GS 59N: The Legacy of Fukushima Daiichi

We will consider the case for nuclear power as an energy source through the lens of the Fukushima disaster. Specific topics will include the cause of the earthquake and tsunami, the causes for the nuclear power plant failure, the mechanisms for the release of radioactivity at the time of the accident and today, and the ongoing human impact of this tragedy. In addition to the details of the accident and the release of radioactivity, class discussions and readings will explore the health and economic impacts of nuclear power and examine how the accident has affected the future prospects of nuclear power in Japan, the U.S., and around the world.
Terms: Spr | Units: 3

GS 90: Introduction to Geochemistry

The chemistry of the solid earth and its atmosphere and oceans, emphasizing the processes that control the distribution of the elements in the earth over geological time and at present, and on the conceptual and analytical tools needed to explore these questions. The basics of geochemical thermodynamics and isotope geochemistry. The formation of the elements, crust, atmosphere and oceans, global geochemical cycles, and the interaction of geochemistry, biological evolution, and climate. Recommended: introductory chemistry.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Stebbins, J. (PI)

GS 101: Environmental and Geological Field Studies in the Rocky Mountains (EARTHSYS 100, ESS 101)

Three-week, field-based program in the Greater Yellowstone/Teton and Wind River Mountains of Wyoming. Field-based exercises covering topics including: basics of structural geology and petrology; glacial geology; western cordillera geology; paleoclimatology; chemical weathering; aqueous geochemistry; and environmental issues such as acid mine drainage and changing land-use patterns.
Terms: Aut | Units: 3
Instructors: ; Chamberlain, P. (PI)

GS 102: Earth Materials: Introduction to Mineralogy

The minerals and materials that comprise the earth and their uses in modern society. How to identify, classify, and interpret rock-forming minerals. Emphasis is on information provided by common minerals about the nature of the Earth's interior and processes such as magmatism and metamorphism that operate there, as well as the major processes of weathering and erosion that link plate tectonics to earth cycles. Required lab section. Prerequisite: introductory geology course. Recommended: introductory chemistry.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

GS 103: Earth Materials: Rocks in Thin Section

Use of petrographic microscope to identify minerals and common mineral associations in igneous, metamorphic, and sedimentary rocks. Crystallization histories, mineral growth and reaction relations, deformation textures in metamorphic rocks, and provenance of siliciclastic rocks. Required lab section. Prerequisite 102.
Terms: Win | Units: 3

GS 104: Introduction to Petrology (GS 204)

The origin of igneous and metamorphic rocks as a function of geologic and plate tectonic setting. How to determine the temperature and pressure conditions of formation from mineral assemblages, textures, and compositions. Undergraduate students majoring in Geological Sciences must take the course for 4 units and complete a weekly lab section examining rocks in thin section. Prerequisite: introductory geology course, GS102; those taking the lab must also have completed GS103 or have equivalent experience with a petrographic microscope.
Terms: Spr | Units: 3-4

GS 105: Introduction to Field Methods

Two-week, field-based course in the White Mountains of eastern California. Introduction to the techniques for geologic mapping and geologic investigation in the field: systematic observations and data collection for lithologic columns and structural cross-sections. Interpretation of field relationships and data to determine the stratigraphic and deformational history of the region. Prerequisite: GS 1, recommended: GS 102.
Terms: Aut, Spr | Units: 3 | UG Reqs: WAY-SMA

GS 107: Journey to the Center of the Earth (GEOPHYS 184, GEOPHYS 274, GS 207)

The interconnected set of dynamic systems that make up the Earth. Focus is on fundamental geophysical observations of the Earth and the laboratory experiments to understand and interpret them. What earthquakes, volcanoes, gravity, magnetic fields, and rocks reveal about the Earth's formation and evolution. Offered every other year, winter quarter. Next offering Winter 2013-14.
| Units: 3 | UG Reqs: WAY-SMA

GS 110: Structural Geology and Tectonics

Theory, principles, and practical techniques to measure, describe, analyze, and interpret deformation-related structures on Earth. Collection of fault and fold data in the field followed by lab and computer analysis; interpretation of geologic maps and methods of cross-section construction; structural analysis of fault zone and metamorphic rocks; measuring deformation; regional structural styles and associated landforms related to plate tectonic convergence, rifting, and strike-slip faulting; the evolution of mountain belts and formation of sedimentary basins. Prerequisite: GS 1, calculus. Recommended: 102.
Terms: Spr | Units: 3-5 | UG Reqs: GER: DB-NatSci

GS 111: Fundamentals of Structural Geology (CEE 195)

Techniques for mapping using GPS and differential geometry to characterize structures; dimensional analysis and scaling relations; kinematics of deformation and flow; measurement and analysis of stress; elastic deformation and properties of rock; brittle deformation including fracture and faulting; linear viscous flow including folding and magma dynamics; model development and methodology. Models of tectonic processes are constructed and solutions visualized using MATLAB. Prerequisites: GS 1, MATH 51
Terms: Win | Units: 3 | UG Reqs: WAY-FR, WAY-SMA

GS 114A: Our National Parks (EARTH 14, EARTH 114A, GS 14)

Explore the history and natural science of three national parks proximal to Stanford. Under the guidance of instructors, students will work in teams to learn about chosen aspects of these parks, develop dynamic self-guided tours for public consumption, and implement (and publish) these tours using the XibitEd app for iPhones. Students will learn how to present their findings to a general, non-scientific audience, delineate physical locations at which storytelling will take place through the XibitEd system, and create and configure the content for the system. The course will culminate in the publishing of the experiential learning tours, as well as a weekend-long field trip to the Pinnacles National Park
Terms: Win | Units: 2

GS 115: Engineering Geology and Global Change (CEE 196)

The application of geology and global change to the planning, design, and operation of engineering projects. Case histories taught in a seminar setting and field trips emphasize the impact of geology and global change on both individual engineering works and the built environment by considering Quaternary history and tectonics, anthropogenic sea level rise, active geologic processes, engineering properties of geologic deposits, site exploration, and professional ethics. Prerequisite: GS 1 or consent of instructor.
| Units: 3 | UG Reqs: GER: DB-NatSci

GS 118: D^3: Disasters, Decisions, Developmen (EARTHSYS 124, ESS 118, ESS 218, GEOPHYS 118, GEOPHYS 218, GS 218)

This class connects the science behind natural disasters with the real-world constraints of disaster management and development. In each iteration of this class we will focus on a specific, disaster-prone location as case study. By collaborating with local stakeholders we will explore how science and engineering can make a make a difference in reducing disaster risk in the future. Offered every other year.
Terms: Win | Units: 3-5

GS 121: What Makes a Habitable Planet? (GS 221)

Physical processes affecting habitability such as large impacts and the atmospheric greenhouse effect, comets, geochemistry, the rise of oxygen, climate controls, and impact cratering. Detecting and interpreting the spectra of extrasolar terrestrial planets. Student-led discussions of readings from the scientific literature. Team taught by planetary scientists from NASA Ames Research Center.
| Units: 3

GS 122: Planetary Systems: Dynamics and Origins (GS 222)

(Students with a strong background in mathematics and the physical sciences should register for 222.) Motions of planets and smaller bodies, energy transport in planetary systems, composition, structure and dynamics of planetary atmospheres, cratering on planetary surfaces, properties of meteorites, asteroids and comets, extrasolar planets, and planetary formation. Prerequisite: some background in the physical sciences, especially astronomy, geophysics, or physics.
Terms: Aut, Win | Units: 3-4

GS 123: Paleobiology (EARTHSYS 122, GS 223B)

Introduction to the fossil record with emphasis on marine invertebrates. Major debates in paleontological research. The history of animal life in the oceans. Topics include the nature of the fossil record, evolutionary radiations, mass extinctions, and the relationship between biological evolution and environmental change. Fossil taxa through time. Exercises in phylogenetics, paleoecology, biostratigraphy, and statistical methods.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

GS 128: Evolutionary History of Terrestrial Ecosystems (EARTHSYS 128, GS 228)

The what, when, and how do we know it regarding life on land¿including plants, fungi, invertebrates, and vertebrates (yes, dinosaurs)¿and how all of those components interact with each other and with changing climates, continental drift, atmospheric composition, and environmental perturbations like glaciation and mass extinction.
Terms: Win | Units: 4

GS 130: Soil Physics and Hydrology

The occurrence, distribution, circulation, and reaction of water at the surface and within the near surface. Topics: precipitation, evapotranspiration, infiltration and vadose zone, groundwater, surface water and streamflow generation, and water balance estimates. Current and classic theory in soil physics and hydrology. Urban, rangeland, and forested environments.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Loague, K. (PI)

GS 131: Hydrologically-Driven Landscape Evolution

Materials of the Earth and hydrologically driven landscape processes. Topics: hillslope hydrology, weathering of rocks and soils, erosion, flow failures, mass wasting, and conceptual models of landscape evolution. Current and classic theory in geomorphology.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA

GS 135: Field and Analytical Methods in Historical Geobiology (GS 235)

Introduction to research methods in historical geobiology. This research-based course will examine how life in ancient oceans, as recorded in the paleontological record, was affected by environmental change, as recorded in the geochemical record. Students will collect paleontological and geochemical data from a measured stratigraphic section in the western United States. In lab, students will learn low temperature geochemical techniques focusing on the cycling of biogeochemical elements (O, C, S, and Fe) in marine sediments throughout Earth history. This is a lab-based course complemented with lectures. Preference will be given to students able to attend a four-day field trip at the end of spring break to measure the stratigraphic section and collect samples.
Terms: Spr | Units: 4
Instructors: ; Sperling, E. (PI)

GS 135A: Historical Geobiology Field Trip

Field trip to a sedimentary succession of geobiological interest. Students will measure the stratigraphic section, describe fossils and trace fossils, and collect samples for geochemical analysis. Offered over spring break.
Terms: Spr | Units: 1
Instructors: ; Sperling, E. (PI)

GS 135A: Historical Geobiology Field Trip

Field trip to a sedimentary succession of geobiological interest. Students will measure the stratigraphic section, describe fossils and trace fossils, and collect samples for geochemical analysis. Offered over spring break.
| Units: 1

GS 150: Senior Seminar: Issues in Earth Sciences

Focus is on written and oral communication in a topical context. Topics from current frontiers in earth science research and issues of concern to the public. Readings, oral presentations, written work, and peer review.
Terms: Aut | Units: 3
Instructors: ; Bird, D. (PI); Martin, V. (TA)

GS 151: Sedimentary Geology and Petrography: Depositional Systems

Topics: weathering, erosion and transportation, deposition, origins of sedimentary structures and textures, sediment composition, diagenesis, sedimentary facies, tectonics and sedimentation, and the characteristics of the major siliciclastic and carbonate depositional environments. Required Lab Section: methods of analysis of sediments in hand specimen and thin section. Field trips. Prerequisites: 1, 102, 103.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci

GS 163: Introduction to Isotope Geochemistry (GS 263)

Stable, cosmogenic, and radiogenic isotopes; processes that govern isotopic variations. Application of isotopes to geologic, biologic, and hydrologic questions. Major isotopic systems and their applications. Simple modeling techniques used in isotope geochemistry.
| Units: 3

GS 170: Environmental Geochemistry (EARTHSYS 170, GS 270)

Solid, aqueous, and gaseous phases comprising the environment, their natural compositional variations, and chemical interactions. Contrast between natural sources of hazardous elements and compounds and types and sources of anthropogenic contaminants and pollutants. Chemical and physical processes of weathering and soil formation. Chemical factors that affect the stability of solids and aqueous species under earth surface conditions. The release, mobility, and fate of contaminants in natural waters and the roles that water and dissolved substances play in the physical behavior of rocks and soils. The impact of contaminants and design of remediation strategies. Case studies. Prerequisite: 90 or consent of instructor.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci

GS 171: Geochemical Thermodynamics

Introduction to the application of chemical principles and concepts to geologic systems. The chemical behavior of fluids, minerals, and gases using simple equilibrium approaches to modeling the geochemical consequences of diagenetic, hydrothermal, metamorphic, and igneous processes. Topics: reversible thermodynamics, solution chemistry, mineral-solution equilibria, reaction kinetics, and the distribution and transport of elements by geologic processes. Prerequisite: GS 102.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: ; Bird, D. (PI); Thomas, D. (TA)

GS 180: Igneous Processes (GS 280)

For juniors, seniors and beginning graduate students in Earth Sciences. Structure and physical properties of magmas; use of phase equilibria and mineral barometers and thermometers to determine conditions of magmatic processes; melting and magmatic lineages as a function of tectonic setting; processes that control magma composition including fractional crystallization, partial melting, and assimilation; petrogenetic use of trace elements and isotopes. Labs emphasize identification of volcanic and plutonic rocks in thin section and interpretation of rock textures. Prerequisite 102, 103, or consent of instructor.
Terms: Spr | Units: 4
Instructors: ; Stebbins, J. (PI)

GS 183: California Desert Geologic Field Trip

Field seminar. Three class meetings during Winter quarter followed by a 6-day field trip over Spring Break to Mojave Desert, Death Valley, and Owens Valley. Basin-and-range faulting, alluvial fans, playas, sand dunes, metamorphic rocks, granites of the Sierra Nevada, lava flows and and the deposits of supervolcanic eruptions, hot springs, ore deposits, and desert landscapes. Involves camping and some hiking. Recommended: introductory geology. Enrollment limited to 25 students; preference given to freshman and sophomores; additionally graduate students in the School of Earth, Energy & Environmental Sciences.
Terms: Win | Units: 1

GS 184: Field Seminar on Eastern Sierran Volcanism

For nonmajors and prospective majors in the earth sciences and archaeology. Four-day trip over Memorial Day weekend to study silicic and mafic volcanism in the eastern Sierra Nevada: basaltic lavas and cinder cones erupted along normal faults bounding Owens Valley, Long Valley caldera, postcaldera rhyolite lavas, hydrothermal alteration and hot springs, Holocene rhyolite lavas of the Inyo and Mono craters, subaqueous basaltic and silicic eruptions of Mono Basin, floating pumice blocks. If snow-level permits, silicic volcanism associated with the Bodie gold district. Recommended: 1 or equivalent.
| Units: 1

GS 185: Volcanology (GS 285A)

For juniors, seniors, and beginning graduate students. Eruptive processes that create volcanic deposits and landforms; shield, stratocone, and composite volcanoes, lava dome fields; calderas. Control of magma viscosity and water content on eruptive style. Fluid dynamic controls on the characteristics of lavas and pyroclastic flows. Submarine and subglacial eruptions and interaction of magma with groundwater. Rhyolitic supereruptions and flood basalts: effects on climate and atmospheric chemistry, relation to extinction events. Volcanic hazards and mitigating risk. Geophysical monitoring of active volcanoes. Volcanic-hosted geothermal systems and mineral resources. Those taking the class for 4 units will complete a 3-hour weekly lab that emphasizes recognizing types of lavas and products of explosive eruptions in hand specimen and thin section. Prerequisite: 1, for those taking the course for 3 units; 103 and 104 or equivalent for those taking the course for 4 units.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci

GS 190: Research in the Field

Two to three-week long courses that provide students with the opportunity to collect data in the field as part of a team-based investigation of research questions or topics under the expert guidance of knowledgeable faculty and graduate students. Topics and locations vary. May be taken multiple times for credit. Prerequisites: GS 1, GS 102, GS 105.
Terms: Aut, Spr | Units: 3 | Repeatable 3 times (up to 12 units total)
Instructors: ; Grove, M. (PI)

GS 191: SE3 Field Trips (EARTH 191)

Four- to seven-day field trips to locations of geologic and environmental interest. Includes trips offered during Thanksgiving and Spring breaks. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit

GS 192: Undergraduate Research in Geological Sciences

Field-, lab-, or literature-based. Faculty supervision. Written reports. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit

GS 197: Senior Thesis

For seniors who wish to write a thesis based on research in 192 or as a summer research fellow. May not be repeated for credit; may not be taken if enrolled in 199.
Terms: Aut, Win, Spr, Sum | Units: 3-5

GS 198: Special Problems in Geological Sciences

Reading and instruction under faculty supervision. Written reports. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit

GS 199: Honors Program

Research on a topic of special interest. See "Undergraduate Honors Program" above.nMay be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit

GS 204: Introduction to Petrology (GS 104)

The origin of igneous and metamorphic rocks as a function of geologic and plate tectonic setting. How to determine the temperature and pressure conditions of formation from mineral assemblages, textures, and compositions. Undergraduate students majoring in Geological Sciences must take the course for 4 units and complete a weekly lab section examining rocks in thin section. Prerequisite: introductory geology course, GS102; those taking the lab must also have completed GS103 or have equivalent experience with a petrographic microscope.
Terms: Spr | Units: 3-4

GS 206: Topics in Organismal Paleobiology

Seminar course covering an area of structural biology, physiology, and ecology relevant to understanding the fossil record. Topic will change each time the course is offered. Examples of potential topics are biomineralization, fluid mechanics, biomechanics, taphonomy & biochemical preservation, and photosynthesis in air and water.
Terms: Aut | Units: 2-3 | Repeatable 4 times (up to 12 units total)
Instructors: ; Boyce, C. (PI)

GS 207: Journey to the Center of the Earth (GEOPHYS 184, GEOPHYS 274, GS 107)

The interconnected set of dynamic systems that make up the Earth. Focus is on fundamental geophysical observations of the Earth and the laboratory experiments to understand and interpret them. What earthquakes, volcanoes, gravity, magnetic fields, and rocks reveal about the Earth's formation and evolution. Offered every other year, winter quarter. Next offering Winter 2013-14.
| Units: 3

GS 208: Topics in Geobiology (ESS 208)

Reading and discussion of classic and recent papers in the field of Geobiology. Co-evolution of Earth and life; critical intervals of environmental and biological change; geomicrobiology; paleobiology; global biogeochemical cycles; scaling of geobiological processes in space and time.
Terms: Aut | Units: 1 | Repeatable 3 times (up to 3 units total)

GS 209: Microstructures

Microstructures in metamorphic rocks reveal temperature, pressure, and rates of deformation in the crust and variations in its thermo-mechanical behavior. Topics include the rheology of rocks and minerals, strain partitioning, shear zones and brittle-ductile transition in the crust, mechanisms of foliation and lineation development, preferred crystallographic fabrics, and geochronologic methods useful for dating deformation. Labs involve microstructure analysis of suites of rocks from classic localities. 5 units for extra project.
Terms: Win | Units: 3-5
Instructors: ; Miller, E. (PI)

GS 210: Geologic Evolution of the Western U.S. Cordillera

The geologic and tectonic evolution of the U.S. Cordillera based on its rock record through time. This region provides good examples of large-scale structures and magmatic activity generated during crustal shortening, extension, and strike-slip faulting and affords opportunity to study crustal-scale processes involved in mountain building in context of plate tectonic motions.
| Units: 1-3

GS 211: Topics in Regional Geology and Tectonics

May be repeated for credit.
| Units: 2-3 | Repeatable for credit

GS 212: Topics in Tectonic Geomorphology

For upper-division undergraduates and graduate students. Topics vary and may include coupling among erosional, tectonic, and chemical weathering processes at the scale of orogens; historical review of tectonic geomorphology; hillslope and fluvial process response to active uplift; measures of landscape form and their relationship to tectonic uplift and bedrock lithology. May be repeated for credit.
| Units: 2 | Repeatable for credit

GS 213: Topics in Sedimentary Geology

For upper division undergraduates and graduate students. Topics vary each year but the focus is on current developments and problems in sedimentary geology, sedimentology, and basin analysis. These include issues in deep-water sediments, their origin, facies, and architecture; sedimentary systems on the early Earth; and relationships among tectonics, basin development, and basin fill. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 2 | Repeatable for credit
Instructors: ; Lowe, D. (PI)

GS 214: Topics in Paleobiology

For upper division undergraduates and graduate students. Topics vary each year; focus is on paleontological, sedimentological, and geochemical approaches to the history of life. Topics may include: mass extinction events; evolutionary radiations; the history of global biodiversity; links between evolutionary histories of primary producers and consumers; and the quality of the fossil record. Term paper. May be repeated for credit.
Terms: Spr | Units: 1 | Repeatable for credit
Instructors: ; Payne, J. (PI)

GS 215: Structural Geology and Rock Mechanics (CEE 297R, GEOPHYS 251)

Quantitative field and laboratory data integrated with solutions to boundary value problems of continuum mechanics to understand tectonic processes in Earth's crust that lead to the development of geological structures including folds, faults, fractures and fabrics. Topics include: techniques and tools for structural mapping¿ differential geometry to characterize structures¿ dimensional analysis and scaling relations¿ kinematics of deformation and flow¿ traction and stress analysis, conservation of mass and momentum in a deformable continuum¿ linear elastic deformation and elastic properties¿ brittle deformation including fracture and faulting¿ model development and methodology. Data sets analyzed using MATLAB. Prerequisites: GS 1, MATH 53, MATLAB or equivalent.
Terms: Win | Units: 4

GS 218: D^3: Disasters, Decisions, Developmen (EARTHSYS 124, ESS 118, ESS 218, GEOPHYS 118, GEOPHYS 218, GS 118)

This class connects the science behind natural disasters with the real-world constraints of disaster management and development. In each iteration of this class we will focus on a specific, disaster-prone location as case study. By collaborating with local stakeholders we will explore how science and engineering can make a make a difference in reducing disaster risk in the future. Offered every other year.
Terms: Win | Units: 3-5

GS 221: What Makes a Habitable Planet? (GS 121)

Physical processes affecting habitability such as large impacts and the atmospheric greenhouse effect, comets, geochemistry, the rise of oxygen, climate controls, and impact cratering. Detecting and interpreting the spectra of extrasolar terrestrial planets. Student-led discussions of readings from the scientific literature. Team taught by planetary scientists from NASA Ames Research Center.
| Units: 3

GS 222: Planetary Systems: Dynamics and Origins (GS 122)

(Students with a strong background in mathematics and the physical sciences should register for 222.) Motions of planets and smaller bodies, energy transport in planetary systems, composition, structure and dynamics of planetary atmospheres, cratering on planetary surfaces, properties of meteorites, asteroids and comets, extrasolar planets, and planetary formation. Prerequisite: some background in the physical sciences, especially astronomy, geophysics, or physics.
Terms: Win | Units: 3-4

GS 223: Reflection Seismology Interpretation (GEOPHYS 183, GEOPHYS 223)

The structural and stratigraphic interpretation of seismic reflection data, emphasizing hydrocarbon traps in two and three dimensions on industry data, including workstation-based interpretation. Lectures only, 1 unit. Prerequisite: 222, or consent of instructor. (Geophys 183 must be taken for a minimum of 3 units to be eligible for Ways credit).
Terms: Spr | Units: 1-4

GS 223B: Paleobiology (EARTHSYS 122, GS 123)

Introduction to the fossil record with emphasis on marine invertebrates. Major debates in paleontological research. The history of animal life in the oceans. Topics include the nature of the fossil record, evolutionary radiations, mass extinctions, and the relationship between biological evolution and environmental change. Fossil taxa through time. Exercises in phylogenetics, paleoecology, biostratigraphy, and statistical methods.
Terms: Spr | Units: 4

GS 224A: Paleoecology of the Open Sea

Reading and discussion on the (paleo)ecology of the open sea, with a particular view toward contrasting patterns in pelagic, benthic, and terrestrial realms. Reading will include a mix of classic and recent papers, and the course will be structure around 2-4 major focal areas, following on group interests.
Terms: Spr | Units: 1
Instructors: ; Hull, P. (PI); Ferree, A. (GP)

GS 225: Contaminant Hydrogeology and Reactive Transport (CEE 260C, ESS 221)

For earth scientists and engineers. Environmental, geologic, and water resource problems involving migration of contaminated groundwater through porous media and associated biogeochemical and fluid-rock reactions. Conceptual and quantitative treatment of advective-dispersive transport with reacting solutes. Predictive models of contaminant behavior controlled by local equilibrium and kinetics. Modern methods of contaminant transport simulation and reactive transport modeling using geochemical transport software. Some Matlab programming / program modification required. Prerequisite: Physical Hydrogeology ESS 220 / CEE 260A (Gorelick) or equivalent. Recommended: course work in environmental chemistry or geochemistry (e.g., one or more of the following: ESS 155, ESS 156/256 GS 90, GS 170/279, GS 171, CEE 177 or CEE 270).
Terms: Win | Units: 4

GS 225A: Fundamentals of Geochemical Modeling

A class devoted to geochemical models and the computational and analytical tools required to successfully construct and solve them. Topics include: box models, impulse responses, transfer functions, eigenvalues, advection-diffusion-reaction models, discretization schemes, numerical methods (Euler, Runge-Kutta, Gauss¿Seidel), Green's function, Laplace and Fourier transforms. The class will include a final project in which students will have the opportunity to apply the above tools to their own research or a problem of their choice.
Terms: Spr | Units: 3
Instructors: ; Bachan Dovrat, A. (PI)

GS 228: Evolutionary History of Terrestrial Ecosystems (EARTHSYS 128, GS 128)

The what, when, and how do we know it regarding life on land¿including plants, fungi, invertebrates, and vertebrates (yes, dinosaurs)¿and how all of those components interact with each other and with changing climates, continental drift, atmospheric composition, and environmental perturbations like glaciation and mass extinction.
Terms: Win | Units: 4

GS 233A: Microbial Physiology (BIO 180, EARTHSYS 255, ESS 255)

Introduction to the physiology of microbes including cellular structure, transcription and translation, growth and metabolism, mechanisms for stress resistance and the formation of microbial communities. These topics will be covered in relation to the evolution of early life on Earth, ancient ecosystems, and the interpretation of the rock record. Recommended: introductory biology and chemistry.
Terms: Aut | Units: 3
Instructors: ; Welander, P. (PI)

GS 234A: Molecular Microbial Biosignatures (ESS 261)

Critical reading and discussion of literature on molecular biosignatures as indicators of microbial life and metabolisms in modern and ancient environments. Focus will be primarily on recalcitrant lipids that form chemical fossils and topics covered will include biosynthetic pathways of these lipids, their phylogenetic origins, their physiological roles in modern organisms, and their occurrence throughout the geological record. Recommended: microbiology and organic chemistry.
| Units: 1-3

GS 235: Field and Analytical Methods in Historical Geobiology (GS 135)

Introduction to research methods in historical geobiology. This research-based course will examine how life in ancient oceans, as recorded in the paleontological record, was affected by environmental change, as recorded in the geochemical record. Students will collect paleontological and geochemical data from a measured stratigraphic section in the western United States. In lab, students will learn low temperature geochemical techniques focusing on the cycling of biogeochemical elements (O, C, S, and Fe) in marine sediments throughout Earth history. This is a lab-based course complemented with lectures. Preference will be given to students able to attend a four-day field trip at the end of spring break to measure the stratigraphic section and collect samples.
Terms: Spr | Units: 4
Instructors: ; Sperling, E. (PI)

GS 237: Surface and Near-Surface Hydrologic Response (CEE 260B)

Quantitative review of process-based hydrology and geomorphology. Introduction to finite-difference and finite-element methods of numerical analysis. Topics: biometeorology, unsaturated and saturated subsurface fluid flow, overland and open channel flow, and physically-based simulation of coupled surface and near-surface hydrologic response. Links hydrogeology, soil physics, and surface water hydrology.
| Units: 3

GS 238: Soil Physics

Physical properties of the soil solid phase emphasizing the transport, retention, and transformation of water, heat, gases, and solutes in the unsaturated subsurface. Field experiments.
Terms: Aut | Units: 3

GS 240: Geostatistics (ENERGY 240)

Geostatistical theory and practical methodologies for quantifying and simulating spatial and spatio-temporal patterns for the Earth Sciences. Real case development of models of spatial continuity, including variograms, Boolean models and training images. Estimation versus simulation of spatial patterns. Loss functions. Estimation by kriging, co-kriging with secondary data. Dealing with data on various scales. Unconditional and conditional Boolean simulation, sequential simulation for continuous and categorical variables. Multi-variate geostatistical simulation. Probabilistic and pattern-based approaches to multiple-point simulation. Trend, secondary variable, auxiliary variable and probability-type constraints. Quality control techniques on generated models. Workflows for practical geostatistical applications in mining, petroleum, hydrogeology, remote sensing and environmental sciences. prerequisites: Energy 160/260 or basic course in data analysis/statistics
Terms: Spr | Units: 2-3

GS 241: Data Science for Geoscience

Comprehensive overview and taxonomy of data science (statistics, machine learning & computer vision) relevant for geological sciences, as well as other Earth Sciences. Areas covered are: extreme value statistics for predicting rare geological events; compositional data analysis for geochemistry; multivariate analysis for design of geological data & computer experiments; probabilistic aggregation of evidence for potential mapping; functional data analysis for multivariate environmental datasets, dimension reduction methods for analysis & visualization of geological data & models; sensitivity analysis of coupled physical/chemical numerical models; machine learning-based classification & regression for building surrogate computational models; identification & learning of geological objects with computer vision. Focus on practicality rather than theory. Matlab exercises on realistic data problems.
Terms: Win | Units: 3

GS 246: Reservoir Characterization and Flow Modeling with Outcrop Data (ENERGY 146, ENERGY 246)

Project addressing a reservoir management problem by studying an outcrop analog, constructing geostatistical reservoir models, and performing flow simulation. How to use outcrop observations in quantitative geological modeling and flow simulation. Relationships between disciplines. Weekend field trip.
Terms: Aut | Units: 3

GS 247: Architecture of Turbidite Depositional Systems

This course considers the research that has led to current architectural models of turbidite deposits as we examine diverse data sets that allow us to test these models. Intense exploration and exploitation activities by the petroleum industry have significantly advanced understanding of turbidite systems. These activities stimulated research aimed at developing predictive models of the three common turbidite reservoir types: (1) confined channel systems, (2) weakly confined channel systems, and (3) unconfined lobe systems. Each of these reservoir types are examined in detail considering recognition criteria, internal structure, reservoir characteristics, and important issues related to reservoir potential and performance. Topics of discussion include controlling processes, hierarchy, variability, uncertainty and active areas of research.
Terms: Spr | Units: 3
Instructors: ; McHargue, T. (PI)

GS 248: The Petroleum System: Investigative method to explore for conventional & unconventional hydrocarbons

How the petroleum system concept can be used to more systematically investigate how hydrocarbon fluid becomes an unconventional accumulation in a pod of active source rock and how this fluid moves from this pod to a conventional pool. How to identify, map, and name a petroleum system. The conventional and unconventional accumulation as well as the use of modeling.
Terms: Aut | Units: 1

GS 250: Sedimentation Mechanics

The mechanics of sediment transport and deposition and the origins of sedimentary structures and textures as applied to interpreting ancient rock sequences. Dimensional analysis, fluid flow, drag, boundary layers, open channel flow, particle settling, erosion, sediment transport, sediment gravity flows, soft sediment deformation, and fluid escape. Field trip required.
| Units: 3-4

GS 251: Sedimentary Basins

Analysis of the depositional framework and tectonic evolution of sedimentary basins. Topics: tectonic and environmental controls on facies relations, synthesis of basin development through time in terms of depositional systems and tectonic settings. Weekend field trip required. Prerequisites: 110, 151.
Terms: Aut | Units: 3

GS 252: Sedimentary Petrography

Siliciclastic sediments and sedimentary rocks. Research in modern sedimentary mineralogy and petrography and the relationship between the composition and texture of sediments and their provenance, tectonic settings, and diagenetic histories. Topics vary yearly. Prerequisite: 151 or equivalent. Required lab section.
Terms: Aut | Units: 4
Instructors: ; Lowe, D. (PI)

GS 253: Petroleum Geology and Exploration

The origin and occurrence of hydrocarbons. Topics: thermal maturation history in hydrocarbon generation, significance of sedimentary and tectonic structural setting, principles of accumulation, and exploration techniques. Prerequisites: 110, 151. Recommended: GEOPHYS 223.
| Units: 3

GS 254: Carbonate Sedimentology

Processes of precipitation and sedimentation of carbonate minerals with emphasis on marine systems. Topics include: geographic and bathymetric distribution of carbonates in modern and ancient oceans; genesis and environmental significance of carbonate grains and sedimentary textures; carbonate rocks and sediments as sources of geochemical proxy data; carbonate diagenesis; changes in styles of carbonate deposition through Earth history; carbonate depositional patterns and the global carbon cycle. Lab exercises emphasize petrographic and geochemical analysis of carbonate rocks including map and outcrop scale, hand samples, polished slabs, and thin sections.
| Units: 3-4

GS 255: Basin and Petroleum System Modeling

For advanced undergraduates or graduate students. Students use stratigraphy, subsurface maps, and basic well log, lithologic, paleontologic, and geochemical data to construct 1-D, 2-D, and 3-D models of petroleum systems that predict the extent of source-rock thermal maturity, petroleum migration paths, and the volumes and compositions of accumulations through time (4-D). Recent software such as PetroMod designed to reconstruct basin geohistory. Recommended: 251 or 253.
| Units: 3

GS 256: Quantitative Methods in Basin and Petroleum System Modeling (ENERGY 275)

Examine the physical processes operating in sedimentary basins by deriving the basic equations of fundamental, coupled geologic processes such as fluid flow and heat flow, deposition, compaction, mass conservation, and chemical reactions. Through hands-on computational exercises and instructor-provided "recipes," students will deconstruct the black box of basin modeling software. Students write their own codes (Matlab) as well as gain expertise in modern finite-element modeling software (PetroMod, COMSOL).
Terms: Win | Units: 1-3

GS 257: Clastic Sequence Stratigraphy

Sequence stratigraphy facilitates integration of all sources of geologic data, including seismic, log, core, and paleontological, into a time-stratigraphic model of sediment architecture. Tools applicable to regional and field scales. Emphasis is on practical applications and integration of seismic and well data to exploration and field reservoir problems. Examples from industry data; hands-on exercises.
| Units: 3

GS 258: Introduction to Depositional Systems

The characteristics of the major sedimentary environments and their deposits in the geologic record, including alluvial fans, braided and meandering rivers, aeolian systems, deltas, open coasts, barred coasts, marine shelves, and deep-water systems. Emphasis is on subdivisions; morphology; the dynamics of modern systems; and the architectural organization and sedimentary structures, textures, and biological components of ancient deposits.
| Units: 3

GS 259: Stratigraphic Architecture

The stratigraphic architecture of deposits associated with a spectrum of depositional environments, using outcrop and subsurface data. Participants read and discuss selected literature.
Terms: Spr | Units: 1 | Repeatable for credit

GS 261: Physics and Chemistry of Minerals and Mineral Surfaces

The concepts of symmetry and periodicity in crystals; the physical properties of crystals and their relationship to atomic-level structure; basic structure types; crystal chemistry and bonding in solids and their relative stability; the interaction of x-rays with solids and liquids (scattering and spectroscopy); structural variations in silicate glasses and liquids; UV-visible spectroscopy and the color of minerals; review of the mineralogy, crystal chemistry, and structures of selected rock-forming silicates and oxides; mineral surface and interface geochemistry.
| Units: 4

GS 262: Thermodynamics and Disorder in Minerals and Melts

The thermodynamic properties of crystalline, glassy, and molten silicates and oxides in light of microscopic information about short range structure and ordering. Measurements of bulk properties such as enthalpy, density, and their pressure and temperature derivatives, and structural determination by spectroscopies such as nuclear magnetic resonance and Mössbauer. Basic formulations for configurational entropy, heats of mixing in solid solutions, activities; and the energetics of exsolution, phase transitions, and nucleation. Quantitative models of silicate melt thermodynamics are related to atomic-scale views of structure. A general view of geothermometry and geobarometry. Prerequisites: introductory mineralogy and thermodynamics.
| Units: 3

GS 263: Introduction to Isotope Geochemistry (GS 163)

Stable, cosmogenic, and radiogenic isotopes; processes that govern isotopic variations. Application of isotopes to geologic, biologic, and hydrologic questions. Major isotopic systems and their applications. Simple modeling techniques used in isotope geochemistry.
| Units: 3

GS 266: Managing Nuclear Waste: Technical, Political and Organizational Challenges (IPS 266)

The essential technical and scientific elements of the nuclear fuel cycle, focusing on the sources, types, and characteristics of the nuclear waste generated, as well as various strategies for the disposition of spent nuclear fuel - including reprocessing, transmutation, and direct geologic disposal. Policy and organizational issues, such as: options for the characteristics and structure of a new federal nuclear waste management organization, options for a consent-based process for locating nuclear facilities, and the regulatory framework for a geologic repository. A technical background in the nuclear fuel cycle, while desirable, is not required
| Units: 3

GS 270: Environmental Geochemistry (EARTHSYS 170, GS 170)

Solid, aqueous, and gaseous phases comprising the environment, their natural compositional variations, and chemical interactions. Contrast between natural sources of hazardous elements and compounds and types and sources of anthropogenic contaminants and pollutants. Chemical and physical processes of weathering and soil formation. Chemical factors that affect the stability of solids and aqueous species under earth surface conditions. The release, mobility, and fate of contaminants in natural waters and the roles that water and dissolved substances play in the physical behavior of rocks and soils. The impact of contaminants and design of remediation strategies. Case studies. Prerequisite: 90 or consent of instructor.
Terms: Win | Units: 4

GS 273: Isotope Geochemistry Seminar

Current topics including new analytical techniques, advances in isotopic measurements, and new isotopic approaches and systems. May be repeat for credit for total completion of 5 and total unit allowed 15.
Terms: Win | Units: 1-3 | Repeatable 5 times (up to 15 units total)

GS 276: Earth's Weathering Engine

The complex interactions between the chemical, biological, hydrologic and tectonic process that control the chemical and isotopic flux of material to the oceans, and ultimately the long-term composition of both the atmosphere and the hydrosphere. Through a literature review and discussions students will identify key outstanding questions regarding global chemical weathering fluxes. Through data collection, data analysis, and application of appropriate modeling tools students will produce novel analyses and conclusions regarding the operation of the Earth¿s weathering engine. Permission of instructor required.
| Units: 3 | Repeatable for credit

GS 280: Igneous Processes (GS 180)

For juniors, seniors and beginning graduate students in Earth Sciences. Structure and physical properties of magmas; use of phase equilibria and mineral barometers and thermometers to determine conditions of magmatic processes; melting and magmatic lineages as a function of tectonic setting; processes that control magma composition including fractional crystallization, partial melting, and assimilation; petrogenetic use of trace elements and isotopes. Labs emphasize identification of volcanic and plutonic rocks in thin section and interpretation of rock textures. Prerequisite 102, 103, or consent of instructor.
Terms: Spr | Units: 4
Instructors: ; Stebbins, J. (PI)

GS 281: Principles of 40Ar/39Ar Thermochronometry

The 40Ar/39Ar method is based upon the K-Ar decay scheme and allows high precision geochronology and thermochronology to be performed with K-bearing minerals. Provides a detailed exploration of the method including all practical considerations and laboratory procedures for standardization and instrument calibration. A laboratory component allows practical experience in making measurements and interpreting results.
Terms: Spr | Units: 3-4
Instructors: ; Grove, M. (PI)

GS 282: Interpretative Methods in Detrital Geochronology

Over the past decade, the number of studies that make use of isotopic provenance data has sky-rocketed. This type of data is now routinely used throughout the geosciences to solve a broad range of geologic problems. This seminar examines the state-of-the-art of existing interpretative methods for detrital geo/thermochronology data in provenance studies and critically examines their strengths and weaknesses. While this course will touch upon sampling approaches analytical aspects of data collection, focus is primarily upon data interpretation.
| Units: 3 | Repeatable for credit

GS 283: Thermochronology and Crustal Evolution

Thermochronology analyzes the competition between radioactive in-growth and temperature-dependant loss of radiogenic isotopes within radioactive mineral hosts in terms of temperature-time history. Coupled with quantitative understanding of kinetic phenomena and crustal- or landscape-scale interpretational models, thermochronology provides an important source of data for the Earth Sciences, notably tectonics, geomorphology, and petrogenesis. Focus on recent developments in thermochronology, specifically analytical and interpretative innovations developed over the past decade. Integrates the latest thermochronology techniques with field work in a small-scale research project focused upon crustal evolution.
| Units: 4

GS 285A: Volcanology (GS 185)

For juniors, seniors, and beginning graduate students. Eruptive processes that create volcanic deposits and landforms; shield, stratocone, and composite volcanoes, lava dome fields; calderas. Control of magma viscosity and water content on eruptive style. Fluid dynamic controls on the characteristics of lavas and pyroclastic flows. Submarine and subglacial eruptions and interaction of magma with groundwater. Rhyolitic supereruptions and flood basalts: effects on climate and atmospheric chemistry, relation to extinction events. Volcanic hazards and mitigating risk. Geophysical monitoring of active volcanoes. Volcanic-hosted geothermal systems and mineral resources. Those taking the class for 4 units will complete a 3-hour weekly lab that emphasizes recognizing types of lavas and products of explosive eruptions in hand specimen and thin section. Prerequisite: 1, for those taking the course for 3 units; 103 and 104 or equivalent for those taking the course for 4 units.
Terms: Aut | Units: 3-4

GS 286: Secondary Ionization Mass Spectrometry

Secondary ionization mass spectrometry (SIMS) is a versatile method capable of performing elemental and isotopic analysis in the solid-state at the nanogram to picogram scale. SIMS offers the most favorable combination of high spatial resolution, sensitivity, and mass resolving power. This course explores the ion optics of the primary and secondary columns of SIMS instruments and explains instrumental mass fractionation and standardization methods for both positive and negative secondary ions. Ion imaging and depth profiling approaches are also covered. Practical experience using Stanford's SHRIMP-RG and NanoSIMS instruments is provided.
| Units: 3

GS 287: Fundamentals of Mass Spectrometry

This course explains ion creation, mass separation, and ion detection in mass spectrometry methods commonly used in the Earth Sciences. Gas source (C-O-H-S stable isotope, 40Ar/39Ar, and (U-Th)-He), secondary ionization (SIMS), laser ablation and solution-based mass inductively coupled (ICP-MS) and thermal ionization (TIMS) mass spectrometry techniques are also explored. Additional topics include ion optics, vacuum generation, and pressure measurement, instrument calibration, data reduction, and error propagation methods.
| Units: 3

GS 290: Departmental Seminar in Geological Sciences

Current research topics. Presentations by guest speakers from Stanford and elsewhere. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit
Instructors: ; Boyce, C. (PI)

GS 291: GS Field Trips

Field trips for teaching and research purposes. Trips average 5-10 days. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit

GS 299: Field Research

Two-three week field research projects. Written report required. May be repeated three times.
Terms: Aut, Win, Spr, Sum | Units: 2-4 | Repeatable 3 times (up to 12 units total)

GS 311: Interpretation of Tectonically Active Landscapes

Focuses on interpreting various topographic attributes in terms of horizontal and vertical tectonic motions. Topics include identification, mapping, and dating of geomorphic markers, deducing tectonic motions from spatial changes in landscape steepness, understanding processes that give rise to different landscape elements, interrogating the role of climate and lithology in producing these landscape elements, and understanding relationships between tectonic motions, surface topography, and the spatial distribution of erosion. Consists of two one hour lectures per week and one laboratory section that help students gain proficiency in Quaternary mapping and interpretation of topographic metrics.
Terms: Aut | Units: 3
Instructors: ; Hilley, G. (PI)

GS 312: Analysis of Landforms

Quantitative methods to analyze digital topography and to interpret rates of tectonic and geomorphic processes from topographic metrics. Topics include analysis of digital topography using local and neighborhood-based methods, spectral methods, and wavelet methods. Course consists of two one hour lectures per week and one laboratory section that will help students gain proficiency in calculating topographic metrics using ArcGIS and Matlab.
Terms: Win | Units: 3
Instructors: ; Hilley, G. (PI)

GS 313: Modeling of Landforms

Geomorphic-transport-rule-based, as well as mass- and momentum-conservation based models to understand the evolution of Earth¿s topography. Topics include formulation of land-sculpting processes as geomorphic transport rules, coupling this mass-conservation approach with mechanical models of crustal deformation, and analysis of landscape forms in terms of events for which mass and momentum of fluid and sediment can be conserved. Both analytical, as well as numerical (finite-volume) treatments of particular problems in tectonic geomorphology will be covered. The specific problems addressed as part of the course will be tailored to those currently investigated by class participants.
Terms: Spr | Units: 3
Instructors: ; Hilley, G. (PI)

GS 315: Literature of Structural Geology

Classic studies and current journal articles. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit
Instructors: ; Pollard, D. (PI)

GS 325: The Evolution of Body Size (BIO 325)

Preference to graduate students and upper-division undergraduates in GS and Biology. The influence of organism size on evolutionary and ecological patterns and processes. Focus is on integration of theoretical principles, observations of living organisms, and data from the fossil record. What are the physiological and ecological correlates of body size? Is there an optimum size? Do organisms tend to evolve to larger size? Does productivity control the size distribution of consumers? Does size affect the likelihood of extinction or speciation? How does size scale from the genome to the phenotype? How is metabolic rate involved in evolution of body size? What is the influence of geographic area on maximum body size?
| Units: 2

GS 328: Seminar in Paleobiology

For graduate students. Current research topics including paleobotany, vertebrate and invertebrate evolution, paleoecology, and major events in the history of life on Earth.
| Units: 1 | Repeatable for credit

GS 336: Stanford Alpine Project Seminar

Weekly student presentations on continental collision tectonics, sedimentology, petrology, geomorphology, climate, culture, and other topics of interest. Students create a guidebook of geologic stops in advance of field trip. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit (up to 99 units total)
Instructors: ; Klemperer, S. (PI)

GS 373: METAMORPHIC PETROLOGY

Metamorphic petrology is concerned with the range of solid-state recrystallization and chemical mass transfer processes under physical conditions ranging from those prevalent at the Earth's surface to crustal melting. This course explores the phenomenology of these processes from mineralogic, textural, structural, geochemical, and geodynamic perspectives. The focus is on subduction, arc magmatic, rift magmatic and regional tectonic (collisional and extensional) settings. Important concepts and methods in phase equiibria, thermobarometry, geo/thermochronology, and fabric analysis are explored.
| Units: 3

GS 373L: Metamorphic Petrology Laboratory

Teaches petrographic methods for characterizing recrystallization of common clastic and chemically precipitated sedimentary, mafic and felsic igneous, and ultramafic mantle rocks. Features suites from contact and regional metamorphic settings including arc magmatic, subduction, convergent , and extensional metamorphic settings.
| Units: 1

GS 381: Igneous Petrology and Petrogenesis Seminar

Topics vary by quarter. May be repeated for credit.
Terms: Spr | Units: 1-2 | Repeatable for credit
Instructors: ; Mahood, G. (PI)

GS 385: Practical Experience in the Geosciences

On-the-job training in the geosciences. May include summer internship; emphasizes training in applied aspects of the geosciences, and technical, organizational, and communication dimensions. Meets USCIS requirements for F-1 curricular practical training.n (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit

GS 399: Advanced Projects

Graduate research projects that lead to reports, papers, or other products during the quarter taken. On registration, students designate faculty member and agreed-upon units.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit

GS 400: Graduate Research

Faculty supervision. On registration, students designate faculty member and agreed-upon units.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
© Stanford University | Terms of Use | Copyright Complaints