Print Settings
 

CHEM 10: Exploring Research and Problem Solving Across the Sciences

Development and practice of critical problem solving and study skills using wide variety of scientific examples that illustrate the broad yet integrated nature of current research. Student teams will have the opportunity to explore and present on topics revolving around five central issues: energy, climate change, water resources, medicine, and food & nutrition from a chemical perspective. Course offered in August prior to start of fall quarter.
Terms: Aut | Units: 2 | Grading: Satisfactory/No Credit

CHEM 25N: Science in the News

Preference to freshmen. Possible topics include: diseases such as avian flu, HIV, and malaria; environmental issues such as climate change, atmospheric pollution, and human population; energy sources in the future; evolution; stem cell research; nanotechnology; and drug development. Focus is on the scientific basis for these topics as a basis for intelligent discussion of societal and political implications. Sources include the popular media and scientific media for the nonspecialist, especially those available on the web.
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: ; Andersen, H. (PI)

CHEM 28N: Science Innovation and Communication

Preference to freshmen. The course will explore evolutionary and revolutionary scientific advances; their consequences to society, biotechnology, and the economy; and mechanisms for communicating science to the public. The course will engage academic and industrial thought leaders and provide an opportunity for students to participate in communicating science to the public. This fusion of journalism and science has led to a new undergraduate organization (faSCInate), a web site and video presentations. It is an opportunity to share the fun, excitement and importance of science with others.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Wender, P. (PI)

CHEM 29N: Chemistry in the Kitchen

Preference to Freshmen. This course examines the chemistry relevant to food and drink preparation, both in homes and in restaurants, which makes what we consume more pleasurable. Good cooking is more often considered an art rather than a science, but a small bit of understanding goes a long way to make the preparation and consumption of food and drink more enjoyable. The intention is to have demonstrations and tastings as a part of every class meeting. We will examine some rather familiar items in this course: eggs, dairy products, meats, breads, vegetables, pastries, and carbonated beverages. We shall playfully explore the chemistry that turns food into meals. A high-school chemistry background is assumed; bring to class a good appetite and a healthy curiosity.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: ; Zare, R. (PI)

CHEM 31A: Chemical Principles I

For students with moderate or no background in chemistry. Stoichiometry; periodicity; electronic structure and bonding; gases; enthalpy; phase behavior. Emphasis is on skills to address structural and quantitative chemical questions; lab provides practice. Recitation.
Terms: Aut, Sum | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

CHEM 31AC: Problem Solving in Science

Development and practice of critical problem solving skills using chemical examples. Limited enrollment. Prerequisite: consent of instructor. Corequisite: CHEM 31A.
Terms: Aut | Units: 1 | Grading: Satisfactory/No Credit
Instructors: ; Pfalzgraff, W. (PI)

CHEM 31X: Chemical Principles Accelerated

Accelerated; for students with substantial chemistry background. Chemical equilibria concepts, equilibrium constants, acids and bases, chemical thermodynamics, quantum concepts, models of ionic and covalent bonding, atomic and molecular orbital theory, periodicity, and bonding properties of matter. Recitation. Prerequisites: AP chemistry score of 5 or passing score on chemistry placement test, and AP Calculus AB score of 4 or Math 20. Recommended: high school physics.
Terms: Aut | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: ; Cox, C. (PI); Moerner, W. (PI)

CHEM 35: Organic Chemistry of Bioactive Molecules

Focuses on the structure and reactivity of natural and synthetic bioactive molecules. Covers fundamental concepts underlying chemical reactivity and the logic of chemical synthesis for an appreciation of the profound impact of organic chemistry on humankind in fields ranging from medicine to earth and planetary science. A three hour lab section provides hands on experience with modern chemical methods for preparative and analytical chemistry. Prerequisite: Chem 33.
Terms: Aut, Spr | Units: 5 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit

CHEM 110: Directed Instruction/Reading

Undergraduates pursue a reading program under supervision of a faculty member in Chemistry; may also involve participation in lab. Prerequisites: superior work in 31A,B, 31X, or 33; and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit

CHEM 130: Organic Chemistry Laboratory

Intermediate organic chemistry laboratory, including synthesis and spectroscopy. Nobel prize winning reactions and characterization techniques, such as Diels-Alder and modified Wittig reactions, as well as IR, NMR, and GCMS; Biodiesel synthesis and lipid characterization. Prerequisite: Chem 35 taken in Aut 2014-15 or later, or Chem 35 and 36. Corequisite: 131.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit
Instructors: ; Vollmer-Snarr, H. (PI)

CHEM 131: Organic Polyfunctional Compounds

Aromatic compounds, polysaccharides, amino acids, proteins, natural products, dyes, purines, pyrimidines, nucleic acids, and polymers. Prerequisite: 35.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit
Instructors: ; Trost, B. (PI)

CHEM 173: Physical Chemistry II

Introduction to quantum chemistry: the basic principles of wave mechanics, the harmonic oscillator, the rigid rotator, infrared and microwave spectroscopy, the hydrogen atom, atomic structure, molecular structure, valence theory. Prerequisites: CHEM 171; CME 102 and CME 104 or MATH 53 or consent from instructor; PHYSICS 41, 43.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit
Instructors: ; Martinez, T. (PI)

CHEM 174: Electrochemical Measurements Lab (CHEM 274)

Introduction to modern electrochemical measurement in a hands-on, laboratory setting. Students assemble and use electrochemical cells including indicator, reference, working and counter electrodes, with macro, micro and ultramicro geometries, salt bridges, ion-selective membranes, electrometers, potentiostats, galvanostats, and stationary and rotated disk electrodes. The later portion of the course will involve a student-generated project to experimentally characterize some electrochemical system. Prerequisites: 134, 171, MATH 51, PHYSICS 44 or equivalent.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit
Instructors: ; Chidsey, C. (PI)

CHEM 181: Biochemistry I (CHEMENG 181, CHEMENG 281)

Structure and function of major classes of biomolecules, including proteins, carbohydrates and lipids. Mechanistic analysis of properties of proteins including catalysis, signal transduction and membrane transport. Students will also learn to critically analyze data from the primary biochemical literature. Satisfies Central Menu Area 1 for Bio majors. Prerequisites: CHEM 35 and 135 or 171.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit
Instructors: ; Cegelski, L. (PI)

CHEM 190: Advanced Undergraduate Research

Limited to undergraduates who have completed Chem 35 and/or Chem 134, or by special arrangement with a faculty member. May be repeated 8 times for a max of 27 units. Prerequisite: 35 or 134. Corequisite: 300.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit | Grading: Letter or Credit/No Credit

CHEM 196: Creating New Ventures in Engineering and Science-based Industries (CHEM 296, CHEMENG 196, CHEMENG 296)

Open to seniors and graduate students interested in the creation of new ventures and entrepreneurship in engineering and science intensive industries such as chemical, energy, materials, bioengineering, environmental, clean-tech, pharmaceuticals, medical, and biotechnology. Exploration of the dynamics, complexity, and challenges that define creating new ventures, particularly in industries that require long development times, large investments, integration across a wide range of technical and non-technical disciplines, and the creation and protection of intellectual property. Covers business basics, opportunity viability, creating start-ups, entrepreneurial leadership, and entrepreneurship as a career. Teaching methods include lectures, case studies, guest speakers, and individual and team projects.
Terms: not given this year | Units: 3 | Grading: Letter (ABCD/NP)

CHEM 200: Research and Special Advanced Work

Qualified graduate students undertake research or advanced lab work not covered by listed courses under the direction of a member of the teaching staff. For research and special work, students register for 200.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Satisfactory/No Credit

CHEM 221: Advanced Organic Chemistry

Physical organic chemistry: molecular structures, bonding, and non-covalent interactions; thermodynamic and kinetic understanding of reactivity and reaction mechanism. Prerequisite: 175.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Kanan, M. (PI)

CHEM 229: Organic Chemistry Seminar

Required of graduate students majoring in organic chemistry. Students giving seminars register for 231.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Bertozzi, C. (PI)

CHEM 231: Organic Chemistry Seminar Presentation

Required of graduate students majoring in organic chemistry for the year in which they present their organic seminar. Second-year students must enroll all quarters.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Letter (ABCD/NP)
Instructors: ; Xia, Y. (PI)

CHEM 233A: Creativity in Organic Chemistry

Required of second- and third-year Ph.D. candidates in organic chemistry. The art of formulating, writing, and orally defending a research progress report (A) and two research proposals (B, C). Second-year students register for A and B; third-year students register for C. A: Aut, B: Spr, C: Spr
Terms: Aut | Units: 1 | Grading: Satisfactory/No Credit
Instructors: ; Xia, Y. (PI)

CHEM 258C: Research Progress in Inorganic Chemistry

Required of all second-, third-, and fourth-year Ph.D. candidates in inorganic chemistry. Students present their research progress in written and oral forms (A); present a seminar in the literature of the field of research (B); and formulate, write, and orally defend a research proposal (C). Second-year students register for A; third-year students register for B; fourth-year students register for C.
Terms: Aut, Win | Units: 1 | Grading: Satisfactory/No Credit
Instructors: ; Solomon, E. (PI)

CHEM 259: Inorganic Chemistry Seminar

Required of graduate students majoring in inorganic chemistry.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Solomon, E. (PI)

CHEM 261: Computational Chemistry

Introduction to computational chemistry methods and tools that can be used to interpret and guide experimental research. Project based and hands-on experience with electronic structure calculations, obtaining minimum energy structures and reaction pathways, molecular simulation and modeling. Prerequisite: knowledge of undergraduate level quantum mechanics at the level of Chem 173.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Markland, T. (PI)

CHEM 271: Advanced Physical Chemistry

The principles of quantum mechanics. General formulation, mathematical methods, and applications of quantum theory. Different representations of quantum theory, i. e., the Dirac, Schrödinger, matrix, and density matrix methods. Time independent exactly solvable problems and approximate methods including time independent perturbation theory and the variational method. Atomic energy calculations, angular momentum, and introduction to molecular structure methods. Time dependent methods. Time dependent perturbation theory applied to various problems such as absorption and emission of radiation. Time dependent density matrix formalism applied to coherent coupling of radiation fields to molecular systems, e.g., NMR and optical spectroscopy. Prerequisite: 175 or equivalent course.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Fayer, M. (PI)

CHEM 274: Electrochemical Measurements Lab (CHEM 174)

Introduction to modern electrochemical measurement in a hands-on, laboratory setting. Students assemble and use electrochemical cells including indicator, reference, working and counter electrodes, with macro, micro and ultramicro geometries, salt bridges, ion-selective membranes, electrometers, potentiostats, galvanostats, and stationary and rotated disk electrodes. The later portion of the course will involve a student-generated project to experimentally characterize some electrochemical system. Prerequisites: 134, 171, MATH 51, PHYSICS 44 or equivalent.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Chidsey, C. (PI)

CHEM 279: Physical Chemistry Seminar

Required of graduate students majoring in physical chemistry. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Markland, T. (PI)

CHEM 296: Creating New Ventures in Engineering and Science-based Industries (CHEM 196, CHEMENG 196, CHEMENG 296)

Open to seniors and graduate students interested in the creation of new ventures and entrepreneurship in engineering and science intensive industries such as chemical, energy, materials, bioengineering, environmental, clean-tech, pharmaceuticals, medical, and biotechnology. Exploration of the dynamics, complexity, and challenges that define creating new ventures, particularly in industries that require long development times, large investments, integration across a wide range of technical and non-technical disciplines, and the creation and protection of intellectual property. Covers business basics, opportunity viability, creating start-ups, entrepreneurial leadership, and entrepreneurship as a career. Teaching methods include lectures, case studies, guest speakers, and individual and team projects.
Terms: not given this year | Units: 3 | Grading: Letter (ABCD/NP)

CHEM 299: Teaching of Chemistry

Required of all teaching assistants in Chemistry. Techniques of teaching chemistry by means of lectures and labs.
Terms: Aut, Win, Spr | Units: 1-3 | Repeatable for credit | Grading: Satisfactory/No Credit

CHEM 300: Department Colloquium

Required of graduate students. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Bertozzi, C. (PI)

CHEM 301: Research in Chemistry

Required of graduate students who have passed the qualifying examination. Open to qualified graduate students with the consent of the major professor. Research seminars and directed reading deal with newly developing areas in chemistry and experimental techniques. May be repeated for credit. Search for adviser name on Axess.
Terms: Aut, Win, Spr, Sum | Units: 2 | Repeatable for credit | Grading: Satisfactory/No Credit

CHEM 459: Frontiers in Interdisciplinary Biosciences (BIO 459, BIOC 459, BIOE 459, CHEMENG 459, PSYCH 459)

Students register through their affiliated department; otherwise register for CHEMENG 459. For specialists and non-specialists. Sponsored by the Stanford BioX Program. Three seminars per quarter address scientific and technical themes related to interdisciplinary approaches in bioengineering, medicine, and the chemical, physical, and biological sciences. Leading investigators from Stanford and the world present breakthroughs and endeavors that cut across core disciplines. Pre-seminars introduce basic concepts and background for non-experts. Registered students attend all pre-seminars; others welcome. See http://biox.stanford.edu/courses/459.html. Recommended: basic mathematics, biology, chemistry, and physics.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Medical Satisfactory/No Credit
Instructors: ; Robertson, C. (PI)
© Stanford University | Terms of Use | Copyright Complaints