Print Settings
 

EARTHSYS 8: The Oceans: An Introduction to the Marine Environment (ESS 8)

The course will provide a basic understanding of how the ocean functions as a suite of interconnected ecosystems, both naturally and under the influence of human activities. Emphasis is on the interactions between the physical and chemical environment and the dominant organisms of each ecosystem. The types of ecosystems discussed include coral reefs, deep-sea hydrothermal vents, coastal upwelling systems, blue-water oceans, estuaries, and near-shore dead zones. Lectures, multimedia presentations, group activities, and tide-pooling day trip.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA
Instructors: ; Arrigo, K. (PI)

EARTHSYS 11: Introduction to Geology (EPS 1)

(Former GEOLSCI 1) Why are earthquakes, volcanoes, and natural resources located at specific spots on the Earth's surface? Why are there rolling hills to the west behind Stanford and soaring granite walls to the east in Yosemite? What was the Earth like in the past, and what will it be like in the future? Lectures, hands-on laboratories, in-class activities, and one virtual field trip will help you see the Earth through the eyes of a geologist. Topics include plate tectonics, the cycling and formation of different types of rocks, and how geologists use rocks to understand Earth's history. Change of Department Name: Earth & Planetary Sciences (Formerly Geological Science)
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

EARTHSYS 26: Sustainability in Athletics

This interactive, seminar-style course explores the intersection of environmental sustainability and athletics. Athletic endeavors provide a unique lens to analyze environmental sustainability due to their global reach, engaged fan bases and widely popular sport icons. At the same time, the athletics industry produces an enormous environmental footprint with its travel, events, venue construction and maintenance, high protein diets, global supply chains for equipment, gear and even swag. Because of this reality, the sports industry has the opportunity and responsibility to create meaningful change in support of a sustainable future. We will explore the many ways that the athletics industry can make this change by inviting weekly speakers from a multitude of sports realms to share their expertise, vision and advice. There will be six learning modules addressing sustainability in terms of athletic gear and equipment, sports nutrition, facilities and stadiums, game days and events, the national and international stage, and individual sustainability superstars. Through taking this course, students will develop an understanding for the current state of athletic sustainability as well as future directions and opportunities for the industry in this space. They also get to undertake a real project on campus to further Stanford¿s commitment to sustainability as a purposeful university. The one unit option focusses on the weekly speakers, reading reflections and a final presentation, where the two unit option incorporates a sustainability in athletics project on campus. A project deliverable and presentation will serve as the culmination of this course.
Terms: Spr | Units: 1-2

EARTHSYS 46N: Exploring the Critical Interface between the Land and Monterey Bay: Elkhorn Slough (ESS 46N)

Preference to freshmen. Field trips to sites in the Elkhorn Slough, a small agriculturally impacted estuary that opens into Monterey Bay, a model ecosystem for understanding the complexity of estuaries, and one of California's last remaining coastal wetlands. Readings include Jane Caffrey's "Changes in a California Estuary: A Profile of Elkhorn Slough". Basics of biogeochemistry, microbiology, oceanography, ecology, pollution, and environmental management.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA
Instructors: ; Francis, C. (PI)

EARTHSYS 47: Introduction to Research in Ecology and Evolutionary Biology (BIO 47)

The goal of this course is to develop an understanding of how to conduct biological research, using a topic in Ecology, Evolutionary Biology, and Plant Biology as a practical example. This includes the complete scientific process: assessing background literature, generating testable hypotheses, learning techniques for field- and lab-based data collection, analyzing data using appropriate statistical methods, and, finally, writing and sharing your results. To build these skills, this course will focus on nectar microbes at Stanford's nearby Jasper Ridge Biological Preserve. Students, working in teams, will develop novel research hypotheses and execute the necessary experiments and measurements to test these hypotheses. The capstone of the course is an oral presentation of student teams' research findings, as well as a research paper written in the style of a peer-reviewed journal article. Labs will be completed both on campus and at Jasper Ridge. Although there are no pre-requisites to enroll in the class, it will be helpful if you have already taken BIO 81 or HUMBIO 2A. IMPORTANT NOTE: Satisfies WIM requirement in Biology but must be taken for a letter grade.
Terms: Spr | Units: 4

EARTHSYS 56: Understanding and Imagining Sustainable Food Systems

What does resilient and sustainable agriculture look like? How do we provide people with enough nutritious food that they enjoy eating? What does a community-centered food system even look like - and what's stopping us from creating it? This discussion-based course examines these questions, drawing on a variety of sources to give students an introduction to sustainable food and agriculture. Over the course of the quarter, students will explore what modern farming practices look like and begin to understand the forces that have shaped what and how we eat. This course will approach each topic with an imaginative lens, asking not only what methods and practices are currently in place, but also exploring what could be possible. Content includes indigenous farming practices and food sovereignty, rural and urban food landscapes, food insecurity and nutrition assistance programs, the Farm Bill, technology, and more. Students taking the course for 1 unit will complete the required readings, a short discussion post, and join for an in-class discussion. The 2-unit option additionally includes a project where students will design a plan for a small-scale farm that addresses some aspect of the course (eg. food insecurity or technology in farming).
Terms: Spr | Units: 1-2

EARTHSYS 102: Fundamentals of Renewable Power (ENERGY 102)

Do you want a much better understanding of renewable power technologies? Did you know that wind and solar are the fastest growing forms of electricity generation? Are you interested in hearing about the most recent, and future, designs for green power? Do you want to understand what limits power extraction from renewable resources and how current designs could be improved? This course dives deep into these and related issues for wind, solar, biomass, geothermal, tidal and wave power technologies. We welcome all student, from non-majors to MBAs and grad students. If you are potentially interested in an energy or environmental related major, this course is particularly useful.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

EARTHSYS 103: Understand Energy (CEE 107A, CEE 207A, ENERGY 107A, ENERGY 207A)

NOTE: This course will be taught in-person on main campus, lectures are recorded and available asynchronously. Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. In taking this course, students will not only understand the fundamentals of each energy resource - including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulation, and social, economic, and environmental impacts - students will also be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The 4 unit course includes lecture and in-class discussion, readings and videos, homework assignments, one on-campus field trip during lecture time and two off-campus field trips with brief report assignments. Off-campus field trips to wind farms, solar farms, nuclear power plants, natural gas power plants, hydroelectric dams, etc. Enroll for 5 units to also attend the Workshop, an interactive discussion section on cross-cutting topics that meets once per week for 80 minutes (Mondays, 12:30 PM - 1:50 PM). Open to all: pre-majors and majors, with any background! Website: https://understand-energy-course.stanford.edu/ CEE 107S/207S Understand Energy: Essentials is a shorter (3 unit) version of this course, offered summer quarter. Students should not take both for credit. Prerequisites: Algebra.
Terms: Aut, Spr | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-SI

EARTHSYS 105B: Ecology and Natural History of Jasper Ridge Biological Preserve (BIO 105B)

The Ecology and Natural History of the Jasper Ridge Biological Preserve is an upper-division course that aims to help students learn ecology and natural history using a 'living laboratory,' the Jasper Ridge Biological Preserve. The course's central goal is that, as a community of learning, we examine 'via introductory discussions, followed by hands-on experiences in the field' the scientific basis of ecological research, archaeology, edaphology, geology, species interactions, land management, and multidisciplinary environmental education. The first 10 sessions that compose the academic program are led by the instructors, faculty (world-experts on the themes of each session), and JRBP staff. In addition, this 20-week class (winter and spring quarters) trains students to become JRBP Docents that will join the Jasper Ridge education affiliates community. Completion of both Winter (BIO 105A) and Spring (BIO 105B) sequence training program is required to join the Ecology and Natural History of Jasper Ridge Biological Preserve course.
Terms: Spr | Units: 4

EARTHSYS 106: World Food Economy (EARTHSYS 206, ECON 106, ECON 206, ESS 106, ESS 206)

The World Food Economy is a survey course that covers the economic and political dimensions of food production, consumption, and trade. The course focuses on food markets and food policy within a global context. It is comprised of three major sections: structural features (agronomic, technological, and economic) that determine the nature of domestic food systems; the role of domestic food and agricultural policies in international markets; and the integrating forces of international research, trade, and food aid in the world food economy. This 5-unit course entails a substantial group modeling project that is required for all students. Enrollment is by application only. The application is found at https://economics.stanford.edu/undergraduate/forms. Applications will be reviewed on a first-come, first-serve basis, and priority will be given to upper-level undergraduates who need the course for their major, and to graduate students pursuing work directly related to the course. The application submission period will close on March 15
Terms: Spr | Units: 5 | UG Reqs: WAY-SI

EARTHSYS 109: Rethinking Meat: An Introduction to Alternative Proteins (EARTHSYS 209, ESS 103, ESS 203, ETHICSOC 107)

How do we feed a growing population in the face of climate change? Will Impossible Burgers become the new norm? Are you curious to learn about a frontier in bio- and chemical-engineering? Are you passionate about animal rights, human health, and sustainable agriculture? Learn about the environmental, ethical, and economic drivers behind the market for meat replacements. We'll take a deep dive into the science and technology used to develop emerging plant, fermentation and cell-based meat alternatives and explore the political challenges and behavioral adaptation needed to decrease meat consumption. Hear from entrepreneurs, researchers, and innovative startups developing sustainable and marketable alternative proteins through weekly guest lectures from industry leaders.
Terms: Spr | Units: 1-2

EARTHSYS 113: Earthquakes and Volcanoes (GEOPHYS 90)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA
Instructors: ; Beroza, G. (PI)

EARTHSYS 114: Global Change and Emerging Infectious Disease (EARTHSYS 214, ESS 213, HUMBIO 114)

The changing epidemiological environment. How human-induced environmental changes, such as global warming, deforestation and land-use conversion, urbanization, international commerce, and human migration, are altering the ecology of infectious disease transmission, and promoting their re-emergence as a global public health threat. Case studies of malaria, cholera, hantavirus, plague, and HIV.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-SocSci, WAY-AQR, WAY-SMA
Instructors: ; Jones, J. (PI)

EARTHSYS 123: Tribal Food Sovereignty (NATIVEAM 123)

Connections: Tribal Food Systems and Indigenous Food Sovereignty¿ will explore Indigenous food systems and implications on land, environment, community and Individual health of Indigenous peoples of North America, pre-contact to present, Indigenous responses to western colonial models of eating and living, challenges to Indigenous food sovereignty initiatives and implications for 'present' understandings of food, food production, and relationships with collective resources such as water, land, and people. Students will be exposed to Indigenous food sovereignty advocates, protectors, and thinkers, as well as, hands on activities along with practical grant writing skills.
Terms: Spr | Units: 3
Instructors: ; Briones, V. (PI)

EARTHSYS 125: Shades of Green: Exploring and Expanding Environmental Justice in Practice (CSRE 125E, EARTHSYS 225, URBANST 125)

Historically, discussions of race, ethnicity, culture, and equity in the environment have been shaped by a limited view of the environmental justice movement, often centered on urban environmental threats and separated from other types of environmental and climate advocacy. This course will seek to expand on these discussions by exploring topics such as access to outdoor spaces, definitions of wilderness, inclusion in environmental organizations, gender and the outdoors, the influence of colonialism on ways of knowing, food justice and ethics, and the future of climate change policy. The course will also involve a community partnership project. In small groups students will work with an environmental organization to problem-solve around issues of equity, representation, and access. We value a diversity of experiences and epistemologies and welcome undergraduates from all disciplines. Since this is a practical course, there will be a strong emphasis on participation and commitment to community partnerships. This course requires instructor approval, please submit an application by March 5th at midnight. Application available at https://forms.gle/2kRJFRyfwopWcBeT9
Terms: Spr | Units: 3-4 | UG Reqs: WAY-EDP

EARTHSYS 131: Pathways in Sustainability Careers

Interactive, seminar-style sessions expose students to diverse career pathways in sustainability. Professionals from a variety of careers discuss their work, their career development and decision-points in their career pathways, as well as life style aspects of their choices.
Terms: Win, Spr | Units: 1

EARTHSYS 134: Environmental Justice: Reflection

The EJ reflection class is intended to provide a supported learning space for students who are in the Earth Systems Program Environmental Justice Minor. We will review basic Environmental Justice (EJ) concepts, such as historical underpinnings of EJ problems and movements, principles of EJ guiding social movements and research practice, how to engage in one's own positionality relative to environmental justice, and best practices for EJ communication that centers voices. agency, and leadership of Black, Indigenous, Latinx, Asian and Asia Pacific Islander communities, and other groups historically made marginalized. Students in the minor will also share out project learnings to date, and support one another in refining EJ capstone and/or requirements for the Cardinal Service Notation. We will also host guest sessions to speak to student interests, possible to include trainings, professional development goals.
Terms: Spr | Units: 2

EARTHSYS 135: Challenging the Status Quo: Social Entrepreneurs, Democracy, Development and Environmental Justice (AFRICAST 142, AFRICAST 242, CSRE 142C, INTNLREL 142, URBANST 135)

This community-engaged learning class is part of a broader collaboration between the Program on Social Entrepreneurship at the Haas Center for Public Service, Distinguished Visitors Program and the Doerr School of Sustainability, using practice to better inform theory about how innovation can help address society's biggest challenges with a particular focus on environmental justice, sustainability and climate resilience for frontline and marginalized communities who have or will experience environmental harms. Working with the instructor and the 2024 Distinguished Visitors ? Angela McKee-Brown, founder and CEO of Project Reflect; Jason Su, executive director of the Guadalupe River Park Conservancy; Cecilia Taylor, founder, executive director, and CEO of Belle Haven Action; and Violet Wulf-Saena, founder and executive director of Climate Resilient Communities ? students will use case studies of successful and failed social change strategies to explore relationships between social entrepreneurship, race, systemic inequities, democracy and justice. This course interrogates approaches like design theory, measuring impact, fundraising, leadership, storytelling, and policy advocacy with the Distinguished Visitors providing practical examples from their work on how this theory plays out in practice. This is a community-engaged learning class in which students will learn by working on projects that support the social entrepreneurs' efforts to promote social change. Students should register for either 3 OR 5 units only. Students enrolled in the full 5 units will have a service-learning component along with the course. Students enrolled for 3 units will not complete the service-learning component. Limited enrollment. Attendance at the first class is mandatory in order to participate in service learning. Graduate and undergraduate students may enroll.
Terms: Spr | Units: 3-5 | UG Reqs: WAY-SI
Instructors: ; Janus, K. (PI)

EARTHSYS 139A: Designing Regenerative Societies (STS 139)

The world is changing in contradictory ways. Emerging technology, the evolving geopolitical economy, and ecological challenges present opportunities but also cascading risks. The pathway from our current destructive and extractive economy towards a more regenerative economy is unclear. There is a stark tension between gigascale opportunities such as AI, fusion energy, nanotech, quantum tech, space colonization, and biomanufacturing on the one hand, and degrowth necessities such as rethinking growth and using less resources on the other. This tension is steeped in political choices constrained by industrial power dynamics and conditioned by inequality. To what extent do visions and incentives align across industry, government, and social movements? What would the choice to scale or descale entail in each case - and are they mutually exclusive? The course introduces empirically driven systems thinking with in-depth modules on both emerging tech and degrowth, and scenario-based tech foresight. We combine the tools of technology foresight, gaming, scenarios, speculative fiction, and worldbuilding, exploring and assessing utopian or dystopian trends, visions, and projects (e.g. the Eden project, biomanufacturing at scale, smart cities, the Metaverse, generation spaceships, space colonization, human longevity, mega-disruptive startups, global health governance, radical longtermism, and religious `heavens'). The goal of the course is to gain clarity on the innovation boundaries within which the next 50 years might develop. The course prepares students to become disruptors of governance principles, strategies, and leadership of corporations, philanthropies, economies, and civilizations.
Terms: Spr | Units: 3-4
Instructors: ; Undheim, T. (PI)

EARTHSYS 142: Remote Sensing of Land (EARTHSYS 242, ESS 162, ESS 262)

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR

EARTHSYS 144: Fundamentals of Geographic Information Science (GIS) (ESS 164)

Everything is somewhere, and that somewhere matters." The rapid growth and maturity of spatial data technologies over the past decade represent a paradigm shift in the applied use of location data from high-level overviews of administrative interests, to highly personalized location-based services that place the individual at the center of the map, at all times. The use of spatial data and related technology continues to grow in fields ranging from environmental sciences to epidemiology to market prediction. This course will present an overview of current approaches to the use of spatial data and its creation, capture, management, analysis and presentation, in a research context. Topics will include modeling of geographic objects and associated data, modeling of geographic space and the conceptual foundations of "spatial thinking," field data collection, basic spatial statistical analysis, remote sensing & the use of satellite-based imagery, "Big Data" and machine learning approaches to spatial data, and cartographic design and presentation including the use of web-based "Storymap" platforms. The course will consist of weekly lectures, guest speakers, computer lab assignments, midterm and final exams, as well as an individual final project requirement. This course must be taken for a minimum of 3 units and a letter grade to be eligible for Ways credit.
Terms: Aut, Spr | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR

EARTHSYS 149: Wild Writing (EARTHSYS 249)

What is the wild? What is our relationship to nature, and why does this relationship matter? We will interrogate these questions through the work of influential, diverse, primarily American environmental writers who have given voice to many ways of knowing the wonder, fragility, complexity, and power of the natural world and have inspired readers to act on behalf of social-environmental causes. This course centers the work of diverse voices, including Indigenous, Black, and Chicana writers, enabling us to consider some of the many ways that people have understood and experienced nature throughout history and the relevance of these manifold ways of knowing to our conceptualizations of nature today. Students will develop their responses to the question of what is the wild and why it matters through a series of synchronous and asynchronous in-the-field writing exercises that integrate personal narrative and environmental scholarship, culminating in a ~3000-word narrative nonfiction essay. This course will provide students with knowledge, tools, experience, and skills that will empower them to become more persuasive environmental storytellers and advocates.If you are interested in signing up for the course, complete this pre-registration form:https://stanforduniversity.qualtrics.com/jfe/form/SV_9XqZeZs036WIvop
Terms: Spr | Units: 3 | UG Reqs: WAY-CE

EARTHSYS 151: Biological Oceanography (EARTHSYS 251, ESS 151, ESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA
Instructors: ; Arrigo, K. (PI)

EARTHSYS 153: Solving Social Problems with Data (COMM 140X, DATASCI 154, ECON 163, MS&E 134, POLISCI 154, PUBLPOL 155, SOC 127)

Introduces students to the interdisciplinary intersection of data science and the social sciences through an in-depth examination of contemporary social problems. Provides a foundational skill set for solving social problems with data including quantitative analysis, modeling approaches from the social sciences and engineering, and coding skills for working directly with big data. Students will also consider the ethical dimensions of working with data and learn strategies for translating quantitative results into actionable policies and recommendations. Lectures will introduce students to the methods of data science and social science and apply these frameworks to critical 21st century challenges, including education & inequality, political polarization, and health equity & algorithmic design in the fall quarter, and social media, climate change, and school choice & segregation in the spring quarter. In-class exercises and problem sets will provide students with the opportunity to use real-world datasets to discover meaningful insights for policymakers and communities. This course is the required gateway course for the new major in Data Science & Social Systems. Preference given to Data Science & Social Systems B.A. majors and prospective majors. Course material and presentation will be at an introductory level. Enrollment and participation in one discussion section is required. Sign up for the discussion section will occur on Canvas at the start of the quarter. Prerequisites: CS106A (required), DATASCI 112 (recommended as pre or corequisite). Limited enrollment. Please complete the interest form here: https://forms.gle/8ui9RPgzxjGxJ9k29. A permission code will be given to admitted students to register for the class.
Terms: Aut, Spr | Units: 5 | UG Reqs: WAY-AQR, WAY-SI

EARTHSYS 155: Science of Soils (ESS 155)

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Terms: Spr | Units: 4-5 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Fendorf, S. (PI)

EARTHSYS 156: The Future of Global Systemic Risk (SOC 128, STS 156)

The global risk environment is changing. Seemingly distinct large-scale risks affect what we now realize are mutually interdependent human, socio-technical, and ecological systems. As a result, consequences are more catastrophic, and costs are set to accelerate. How do we determine the top risks of this decade to prioritize actions, and how are both risks and actions likely to evolve and interact? This course investigates the data, methods, and insights mobilized by key actors such as corporations, governments, and academics to assess systemic risk, create future scenarios, and generate predictions. What are the track records of recognized systemic risk assessment and modeling toolkits? Going forward, how can we get better at risk prevention and mitigation? This year, the course will focus on combined risks from the environmental, health, and emerging tech domains. The key objective is to quickly learn relevant vocabularies (risk, tech, and futurist) by engaging with both traditional and emerging assessment methods, in order to discover how to shape positive societal outcomes in the next decade and beyond. The course prepares students for key roles in the assessment, management, and prediction of risks, technologies, markets, industries, infrastructures, and futures. People with these skills can affect the governance principles, strategies, and leadership of corporations, philanthropies, states, economies, and entire societies.
Terms: Spr | Units: 3-4
Instructors: ; Undheim, T. (PI)

EARTHSYS 160: Sustainable Cities (URBANST 164)

Community-engaged learning course that exposes students to sustainability concepts and urban planning as a tool for determining sustainable outcomes in the Bay Area. The focus will be on land use and transportation planning to housing and employment patterns, mobility, public health, and social equity. Topics will include government initiatives to counteract urban sprawl and promote smart growth and livability, political realities of organizing and building coalitions around sustainability goals, and increasing opportunities for low-income and communities of color to achieve sustainability outcomes. Students will participate in remote team-based projects in collaboration with Bay Area community partners. Prerequisites: Consent of the instructor. (Cardinal Course certified by the Haas Center.) Apply here: https://docs.google.com/forms/d/e/1FAIpQLSfhY1w5A_PCjmKdMcGNaZ6Hic24T2zvgF7CfcGrL2tWCWnQGg/viewform
Terms: Spr | Units: 4-5 | UG Reqs: WAY-EDP, WAY-SI
Instructors: ; Kos, R. (PI)

EARTHSYS 166: Building Alliances for Water Justice: Case Studies from California

What is water (in)justice? How have frontline communities come together to reveal inequities in water access and flows, advance meaningful reform, and build and sustain alliances? How do we center equity and repair in the face of drought and climate change? How do we learn to be good allies for water equity? This class will provide a nuanced examination of water injustice and justice by examining historical foundations, inequities in governance and distribution, and pathways toward restoration, repair, and water rights reform for justice. We will anchor our learning in three California-based modules where Indigenous and frontline communities have built powerful alliances for water equity and reform: 1) access to safe drinking water as a human right, 2) protecting in-stream flows and tribal beneficial uses of water in the face of large-scale water exports and diversions, and 3) dam removal for ecological and cultural restoration. Each module will include issue framing and readings from a multidisciplinary instructor team working from an allied perspective, a panel conversation with frontline community leaders for Indigenous rights and environmental justice, and student-led readings and discussions. By grounding our learning in dialogue with frontline community leaders who are reshaping the legal, political, and eco-cultural landscapes for water justice in California, we seek to question dominant frameworks of "community vulnerability," learn from the lived experience of individuals and organizations building meaningful alliances for justice, and begin to anticipate a wide array of legal, policy, organizing, and institution building strategies for reform.
Terms: Spr | Units: 1-3

EARTHSYS 168: Land Use: Planning for Sustainable Cities (AMSTUD 163, PUBLPOL 163, URBANST 163)

Through case studies with a focus on the San Francisco Bay Area, guest speakers, selective readings and interactive assignments, this survey course seeks to demystify the concept of land use for the non-city planner. This introductory course will review the history and trends of land use policies, as well as address a number of current themes to demonstrate the power and importance of land use. Students will explore how urban areas function, how stakeholders influence land use choices, and how land use decisions contribute to positive and negative outcomes. By exploring the contemporary history of land use in the United States, students will learn how land use has been used as a tool for discriminatory practices and NIMBYism. Students will also learn about current land use planning efforts that seek to make cities more sustainable, resilient and equitable to address issues like gentrification, affordable housing, and sea level rise.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-SocSci, WAY-SI

EARTHSYS 181: Urban Agroecology (EARTHSYS 281, ESS 181, ESS 281, URBANST 181)

Urban agriculture takes many forms in cities around the world and provides significant amounts of food and other resources and benefits for urban communities. This Earth Systems practicum explores the application of agroecological principles to the design and stewardship of urban farms and gardens. Students will explore social and ecological dimensions of urban agriculture including issues of environmental justice while gaining land stewardship and small-scale food production skills at the Stanford Educational Farm and in the community. Course application link: https://stanforduniversity.qualtrics.com/jfe/form/SV_d0fFbVV7Gk7UDr0
Terms: Spr | Units: 3

EARTHSYS 197: Directed Individual Study in Earth Systems

Under supervision of an Earth Systems faculty member on a subject of mutual interest.
Terms: Aut, Win, Spr | Units: 1-9 | Repeatable for credit

EARTHSYS 199: Honors Program in Earth Systems

Honors Program in Earth Systems
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit

EARTHSYS 206: World Food Economy (EARTHSYS 106, ECON 106, ECON 206, ESS 106, ESS 206)

The World Food Economy is a survey course that covers the economic and political dimensions of food production, consumption, and trade. The course focuses on food markets and food policy within a global context. It is comprised of three major sections: structural features (agronomic, technological, and economic) that determine the nature of domestic food systems; the role of domestic food and agricultural policies in international markets; and the integrating forces of international research, trade, and food aid in the world food economy. This 5-unit course entails a substantial group modeling project that is required for all students. Enrollment is by application only. The application is found at https://economics.stanford.edu/undergraduate/forms. Applications will be reviewed on a first-come, first-serve basis, and priority will be given to upper-level undergraduates who need the course for their major, and to graduate students pursuing work directly related to the course. The application submission period will close on March 15
Terms: Spr | Units: 5

EARTHSYS 209: Rethinking Meat: An Introduction to Alternative Proteins (EARTHSYS 109, ESS 103, ESS 203, ETHICSOC 107)

How do we feed a growing population in the face of climate change? Will Impossible Burgers become the new norm? Are you curious to learn about a frontier in bio- and chemical-engineering? Are you passionate about animal rights, human health, and sustainable agriculture? Learn about the environmental, ethical, and economic drivers behind the market for meat replacements. We'll take a deep dive into the science and technology used to develop emerging plant, fermentation and cell-based meat alternatives and explore the political challenges and behavioral adaptation needed to decrease meat consumption. Hear from entrepreneurs, researchers, and innovative startups developing sustainable and marketable alternative proteins through weekly guest lectures from industry leaders.
Terms: Spr | Units: 1-2

EARTHSYS 210P: Earth Systems Capstone Project

Students work independently or in groups to complete their Senior Capstone Projects. They will participate in regular advising meetings with the instructor(s), and will give a final presentation on their projects at the end of the quarter in a special Earth Systems symposium. Prerequisite: EARTHSYS 210A or 210B.https://earth.stanford.edu/esys/resources/program-forms-guides
Terms: Win, Spr | Units: 2

EARTHSYS 214: Global Change and Emerging Infectious Disease (EARTHSYS 114, ESS 213, HUMBIO 114)

The changing epidemiological environment. How human-induced environmental changes, such as global warming, deforestation and land-use conversion, urbanization, international commerce, and human migration, are altering the ecology of infectious disease transmission, and promoting their re-emergence as a global public health threat. Case studies of malaria, cholera, hantavirus, plague, and HIV.
Terms: Spr | Units: 3
Instructors: ; Jones, J. (PI)

EARTHSYS 225: Shades of Green: Exploring and Expanding Environmental Justice in Practice (CSRE 125E, EARTHSYS 125, URBANST 125)

Historically, discussions of race, ethnicity, culture, and equity in the environment have been shaped by a limited view of the environmental justice movement, often centered on urban environmental threats and separated from other types of environmental and climate advocacy. This course will seek to expand on these discussions by exploring topics such as access to outdoor spaces, definitions of wilderness, inclusion in environmental organizations, gender and the outdoors, the influence of colonialism on ways of knowing, food justice and ethics, and the future of climate change policy. The course will also involve a community partnership project. In small groups students will work with an environmental organization to problem-solve around issues of equity, representation, and access. We value a diversity of experiences and epistemologies and welcome undergraduates from all disciplines. Since this is a practical course, there will be a strong emphasis on participation and commitment to community partnerships. This course requires instructor approval, please submit an application by March 5th at midnight. Application available at https://forms.gle/2kRJFRyfwopWcBeT9
Terms: Spr | Units: 3-4

EARTHSYS 233: Mitigating Climate Change through Soil Management (ESS 233)

Climate change is one of the greatest crises facing our world. Increasing soil organic carbon storage may be a key strategy for mitigating global climate change, with the potential to offset approximately 20% of annual global fossil fuel emissions. In this course, we will learn about soil carbon cycling, its contribution to the global carbon cycle, how carbon is stored in soil, and land management practices that can increase or decrease soil carbon stocks, thereby mitigating or exacerbating climate change. Although the content is centered on soil carbon, the processes and skills learned in this course can be applied to design solutions to any environmental problem.Prerequisites: Some knowledge of soils, introductory chemistry, and introductory biology would be useful but not necessary. Please email the instructor if you have any concerns or questions.
Terms: Spr | Units: 3
Instructors: ; Hoyt, A. (PI)

EARTHSYS 242: Remote Sensing of Land (EARTHSYS 142, ESS 162, ESS 262)

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Terms: Spr | Units: 3

EARTHSYS 249: Wild Writing (EARTHSYS 149)

What is the wild? What is our relationship to nature, and why does this relationship matter? We will interrogate these questions through the work of influential, diverse, primarily American environmental writers who have given voice to many ways of knowing the wonder, fragility, complexity, and power of the natural world and have inspired readers to act on behalf of social-environmental causes. This course centers the work of diverse voices, including Indigenous, Black, and Chicana writers, enabling us to consider some of the many ways that people have understood and experienced nature throughout history and the relevance of these manifold ways of knowing to our conceptualizations of nature today. Students will develop their responses to the question of what is the wild and why it matters through a series of synchronous and asynchronous in-the-field writing exercises that integrate personal narrative and environmental scholarship, culminating in a ~3000-word narrative nonfiction essay. This course will provide students with knowledge, tools, experience, and skills that will empower them to become more persuasive environmental storytellers and advocates.If you are interested in signing up for the course, complete this pre-registration form:https://stanforduniversity.qualtrics.com/jfe/form/SV_9XqZeZs036WIvop
Terms: Spr | Units: 3

EARTHSYS 250: Directed Research

Independent research. Student develops own project with faculty supervision. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit
Instructors: ; Ardoin, N. (PI); Arrigo, K. (PI); Asner, G. (PI); Ball, J. (PI); Benson, S. (PI); Block, B. (PI); Boggs, C. (PI); Boucher, A. (PI); Cain, B. (PI); Caldwell, M. (PI); Carlisle, L. (PI); Casciotti, K. (PI); Chamberlain, P. (PI); Crowder, L. (PI); Curran, L. (PI); Daily, G. (PI); Davis, J. (PI); Denny, M. (PI); Diffenbaugh, N. (PI); Dirzo, R. (PI); Dunbar, R. (PI); Durham, W. (PI); Egger, A. (PI); Ehrlich, P. (PI); Ernst, W. (PI); Fendorf, S. (PI); Field, C. (PI); Francis, C. (PI); Frank, Z. (PI); Freyberg, D. (PI); Fukami, T. (PI); Gardner, C. (PI); Gerritsen, M. (PI); Gilly, W. (PI); Gordon, D. (PI); Gorelick, S. (PI); Goulder, L. (PI); Hadly, E. (PI); Hayden, T. (PI); Hilley, G. (PI); Hoagland, S. (PI); Ingle, J. (PI); Jamieson, A. (PI); Jones, J. (PI); Kennedy, D. (PI); Kennedy, J. (PI); Knight, R. (PI); Konings, A. (PI); Koseff, J. (PI); Kovscek, A. (PI); Lambin, E. (PI); Litvak, L. (PI); Lobell, D. (PI); Long, S. (PI); Lynham, J. (PI); Masters, G. (PI); Matson, P. (PI); Micheli, F. (PI); Milroy, J. (PI); Monismith, S. (PI); Mooney, H. (PI); Naylor, R. (PI); Nevle, R. (PI); O'Neill, M. (PI); Orr, F. (PI); Palumbi, S. (PI); Payne, J. (PI); Peay, K. (PI); Rajaratnam, B. (PI); Rothe, M. (PI); Schoolnik, G. (PI); Seto, K. (PI); Siegel, R. (PI); Somero, G. (PI); Sweeney, J. (PI); Switzer, P. (PI); Tabazadeh, A. (PI); Thomas, L. (PI); Thompson, B. (PI); Victor, D. (PI); Vitousek, P. (PI); Walbot, V. (PI); Wang, Y. (PI); Watanabe, J. (PI); Weyant, J. (PI); Wiederkehr, S. (PI); Wilber, C. (PI); Wong-Parodi, G. (PI); Woodward, J. (PI); Zoback, M. (PI)

EARTHSYS 251: Biological Oceanography (EARTHSYS 151, ESS 151, ESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips.
Terms: Spr | Units: 3-4
Instructors: ; Arrigo, K. (PI)

EARTHSYS 260: Internship

Supervised field, lab, or public/private sector project. May consist of directed research under the supervision of a Stanford faculty member, participation in one of several off campus Stanford programs, or an approved non-Stanford program or opportunity relevant to the student's Earth Systems studies. Required of and restricted to declared Earth Systems majors. This is a 1 unit, credit/no credit course, consisting of at least 270 hours of work. Course can be fulfilled any quarter. For more course requirements, please visit: https://earth.stanford.edu/esys/undergrad/internship
Terms: Aut, Win, Spr, Sum | Units: 1
Instructors: ; Hoagland, S. (PI)

EARTHSYS 281: Urban Agroecology (EARTHSYS 181, ESS 181, ESS 281, URBANST 181)

Urban agriculture takes many forms in cities around the world and provides significant amounts of food and other resources and benefits for urban communities. This Earth Systems practicum explores the application of agroecological principles to the design and stewardship of urban farms and gardens. Students will explore social and ecological dimensions of urban agriculture including issues of environmental justice while gaining land stewardship and small-scale food production skills at the Stanford Educational Farm and in the community. Course application link: https://stanforduniversity.qualtrics.com/jfe/form/SV_d0fFbVV7Gk7UDr0
Terms: Spr | Units: 3

EARTHSYS 293: Environmental Communication Practicum

Students complete an internship or similar practical experience in a professional environmental communication setting. Potential placements include environmental publications, environmental or outdoor education placements, NGOs, government agencies, on-campus departments, programs, or centers, and science centers and museums. Restricted to students admitted to the Earth Systems Master of Arts, Environmental Communication Program. Can be completed in any quarter.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit
Instructors: ; Hayden, T. (PI)

EARTHSYS 294: Environmental Communication Capstone

The Earth Systems Master of Arts, Environmental Communication capstone project provides students with an opportunity to complete an ambitious independent project demonstrating mastery of an area of environmental communication. Capstone projects are most often applied communication projects such as writing, photography, or video projects; expressive or artistic works; or student-initiated courses, workshops, or curriculum materials. Projects focused on academic scholarship or communication theory research may also be considered. Restricted to students enrolled in the Earth Systems Master of Arts, Environmental Communication Program.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

EARTHSYS 295: Environmental Communication Seminar

Weekly seminar for students enrolled in the Earth Systems Master of Arts, Environmental Communication Program, to be taken twice for credit during degree progress. Includes discussion of and reflection on current topics in environmental communication, skills and professional development workshop sessions, and mentoring and peer support for MA capstone projects.
Terms: Aut, Spr | Units: 1 | Repeatable 2 times (up to 2 units total)
Instructors: ; Hayden, T. (PI)

EARTHSYS 297: Directed Individual Study in Earth Systems

Under supervision of an Earth Systems faculty member on a subject of mutual interest.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit
Instructors: ; Anderson, M. (PI); Archie, P. (PI); Ardoin, N. (PI); Arrigo, K. (PI); Asner, G. (PI); Banerjee, B. (PI); Barry, M. (PI); Block, B. (PI); Boggs, C. (PI); Boucher, A. (PI); Cain, B. (PI); Caldeira, K. (PI); Caldwell, M. (PI); Carlisle, L. (PI); Casciotti, K. (PI); Chamberlain, P. (PI); Curran, L. (PI); Daily, G. (PI); Davis, J. (PI); Denny, M. (PI); Diffenbaugh, N. (PI); Dirzo, R. (PI); Diver, S. (PI); Dunbar, R. (PI); Durham, W. (PI); Egger, A. (PI); Ernst, W. (PI); Fendorf, S. (PI); Field, C. (PI); Francis, C. (PI); Frank, Z. (PI); Freyberg, D. (PI); Fukami, T. (PI); Gardner, C. (PI); Gerritsen, M. (PI); Gilly, W. (PI); Gordon, D. (PI); Gorelick, S. (PI); Goulder, L. (PI); Hadly, E. (PI); Hawk, S. (PI); Hayden, T. (PI); Hecker, S. (PI); Hilley, G. (PI); Hoagland, S. (PI); Ihme, M. (PI); Ingle, J. (PI); Jackson, R. (PI); Jacobson, M. (PI); Jamieson, A. (PI); Jones, J. (PI); Kennedy, D. (PI); Kennedy, J. (PI); Knight, R. (PI); Koseff, J. (PI); Kovscek, A. (PI); Lambin, E. (PI); Lawrence, K. (PI); Litvak, L. (PI); Lobell, D. (PI); Long, S. (PI); Lutomski, P. (PI); Lynham, J. (PI); Lyons, E. (PI); Maples, S. (PI); Masters, G. (PI); Matson, P. (PI); Micheli, F. (PI); Monismith, S. (PI); Mooney, H. (PI); Mormann, F. (PI); Naylor, R. (PI); Nelson, J. (PI); Nevle, R. (PI); Novy, J. (PI); Orr, F. (PI); Ortolano, L. (PI); Osborne, M. (PI); Palumbi, S. (PI); Payne, J. (PI); Peterson-Nafziger, C. (PI); Phillips, K. (PI); Polk, E. (PI); Rajaratnam, B. (PI); Rothe, M. (PI); Saltzman, J. (PI); Schoolnik, G. (PI); Seiger, A. (PI); Seto, K. (PI); Shiv, B. (PI); Siegel, R. (PI); Simon, G. (PI); Smith, A. (PI); Somero, G. (PI); Sweeney, J. (PI); Switzer, P. (PI); Tabazadeh, A. (PI); Thomas, L. (PI); Thompson, B. (PI); Truebe, S. (PI); Victor, D. (PI); Vitousek, P. (PI); Walbot, V. (PI); Watanabe, J. (PI); Weyant, J. (PI); Wiederkehr, S. (PI); Wight, G. (PI); Wolak, F. (PI); Woodward, J. (PI); Zoback, M. (PI)

EARTHSYS 301: Curricular Practical Training - CPT

CPT course required for international students completing degree.
Terms: Spr, Sum | Units: 1-3 | Repeatable 3 times (up to 9 units total)
Instructors: ; Hoagland, S. (PI)

EARTHSYS 323: Stanford at Sea (BIO 182H, BIO 323H, ESS 323, OCEANS 182H, OCEANS 323H)

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Terms: Spr | Units: 16 | UG Reqs: GER: DB-NatSci, WAY-SMA
© Stanford University | Terms of Use | Copyright Complaints