Print Settings
 

ESS 8: The Oceans: An Introduction to the Marine Environment (EARTHSYS 8)

The course will provide a basic understanding of how the ocean functions as a suite of interconnected ecosystems, both naturally and under the influence of human activities. Emphasis is on the interactions between the physical and chemical environment and the dominant organisms of each ecosystem. The types of ecosystems discussed include coral reefs, deep-sea hydrothermal vents, coastal upwelling systems, blue-water oceans, estuaries, and near-shore dead zones. Lectures, multimedia presentations, group activities, and tide-pooling day trip.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit

ESS 46N: Exploring the Critical Interface between the Land and Monterey Bay: Elkhorn Slough (EARTHSYS 46N)

Preference to freshmen. Field trips to sites in the Elkhorn Slough, a small agriculturally impacted estuary that opens into Monterey Bay, a model ecosystem for understanding the complexity of estuaries, and one of California's last remaining coastal wetlands. Readings include Jane Caffrey's Changes in a California Estuary: A Profile of Elkhorn Slough. Basics of biogeochemistry, microbiology, oceanography, ecology, pollution, and environmental management.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: ; Francis, C. (PI)

ESS 107: Control of Nature (EARTHSYS 107)

Think controlling the earth's climate is science fiction? It is when you watch Snowpiercer or Dune, but scientists are already devising geoengineering schemes to slow climate change. Will we ever resurrect the woolly mammoth or even a T. Rex (think Jurassic Park)? Based on current research, that day will come in your lifetime. Who gets to decide what species to save? And more generally, what scientific and ethical principles should guide our decisions to control nature? In this course, we will examine the science behind ways that people alter and engineer the earth, critically examining the positive and negative consequences. We'll explore these issues first through popular movies and books and then, more substantively, in scientific research.
Terms: Spr | Units: 3 | UG Reqs: GER:EC-EthicReas, WAY-ER | Grading: Letter or Credit/No Credit

ESS 108: Research Preparation for Undergraduates

For undergraduates planning to conduct research during the summer with faculty through the MUIR and SUPER programs. Readings, oral presentations, proposal development. May be repeated for credit.
Terms: Spr | Units: 1 | Grading: Credit/No Credit

ESS 124: Remote Sensing of Hydrology (ESS 224)

This class discusses the methods available for remote sensing of the components of the terrestrial hydrologic cycle and how to use them. Topics include the hydrologic cycle, relevant sensor types and the electromagnetic spectrum, active/passive microwave remote sensing (snow, soil moisture, canopy water content, rainfall), thermal sensing of evapotranspiration, gravity and hyperspectral methods, as well as an introduction to data assimilation and calibration/validation approaches for hydrologic variables. Pre-requisite: programming experience.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Konings, A. (PI)

ESS 135: Community Leadership

Offered through Residential Education to residents of Castano House, Manzanita Park. Topics include: emotional intelligence, leadership styles, listening, facilitating meetings, group dynamics and motivation, finding purpose, fostering resilience. Students will lead discussions on personal development, relationships, risky behaviors, race, ethnicity, spirituality, integrity.
Terms: Aut, Win, Spr | Units: 1-2 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Jones, J. (PI)

ESS 143: Molecular Geomicrobiology Laboratory (BIO 142, EARTHSYS 143, ESS 243)

In this course, students will be studying the biosynthesis of cyclic lipid biomarkers, molecules that are produced by modern microbes that can be preserved in rocks that are over a billion years old and which geologist use as molecular fossils. Students will be tasked with identifying potential biomarker lipid synthesis genes in environmental genomic databases, expressing those genes in a model bacterial expression system in the lab, and then analyzing the lipid products that are produced. The overall goal is for students to experience the scientific research process including generating hypotheses, testing these hypotheses in laboratory experiments, and communicating their results through a publication style paper. Prerequisites: BIO83 and CHEM35 or permission of the instructor.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: ; Welander, P. (PI)

ESS 151: Biological Oceanography (EARTHSYS 151, EARTHSYS 251, ESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (EESS/EARTHSYS 152/252). Prerequisites: BIO 43 and EESS 8 or equivalent.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit

ESS 152: Marine Chemistry (EARTHSYS 152, EARTHSYS 252, ESS 252)

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (EESS/EARTHSYS 151/251)
Terms: Spr | Units: 3-4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: ; Casciotti, K. (PI)

ESS 155: Science of Soils (EARTHSYS 155)

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Terms: Spr | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

ESS 165: Advanced Geographic Information Systems (ESS 265)

Building on the Fundamentals of Geographic Information Systems course, this class delves deeper into geospatial analysis and mapping techniques. The class is heavily project-based and students are encouraged to bring their own research questions. Topics include topographic analysis, interpolation, spatial statistics, network analysis, and scripting using Python and Acrpy. All students are required to attend a weekly lab. ESS 164 or equivalent is a prerequisite.
Terms: Spr | Units: 4 | Repeatable for credit | Grading: Letter (ABCD/NP)
Instructors: ; Lyons, E. (PI)

ESS 170: Analyzing land use in a globalized world (ESS 270)

This course examines the dynamics of land use in relation to globalization. The objective is to understand how the expansion of global trade, and public and private regulations affect land use changes. The course will enable students to better understand how to effectively influence land use change, from different vantage points (government, NGO, corporate actor¿). The main emphasis is on tropical regions. Lectures introduce theories, practical cases, and evaluation tools to better understand contemporary land use dynamics.
Units: 3 | Grading: Letter (ABCD/NP)
Instructors: ; Lambin, E. (PI)

ESS 185: ADAPTATION

Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

ESS 210: Techniques in Environmental Microbiology

Fundamentals and application of laboratory techniques to study the diversity and activity of microorganisms in environmental samples, including soil, sediment, and water. Emphasis is on culture-independent approaches, including epifluorescence microscopy, extraction and analysis of major biomolecules (DNA, RNA, protein, lipids), stable isotope probing, and metabolic rate measurements. Format will include lectures, laboratory exercises, and discussions. Students will learn how to collect, analyze, and understand common and cutting-edge datasets in environmental microbiology.
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: ; Dekas, A. (PI)

ESS 224: Remote Sensing of Hydrology (ESS 124)

This class discusses the methods available for remote sensing of the components of the terrestrial hydrologic cycle and how to use them. Topics include the hydrologic cycle, relevant sensor types and the electromagnetic spectrum, active/passive microwave remote sensing (snow, soil moisture, canopy water content, rainfall), thermal sensing of evapotranspiration, gravity and hyperspectral methods, as well as an introduction to data assimilation and calibration/validation approaches for hydrologic variables. Pre-requisite: programming experience.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Konings, A. (PI)

ESS 240: Advanced Oceanography

For upper-division undergraduates and graduate students in the earth, biologic, and environmental sciences. Topical issues in marine science/oceanography. Topics vary each year following or anticipating research trends in oceanographic research. Focus is on links between the circulation and physics of the ocean with climate in the N. Pacific region, and marine ecologic responses. Participation by marine scientists from research groups and organizations including the Monterey Bay Aquarium Research Institute.
Terms: Spr | Units: 3 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Dunbar, R. (PI)

ESS 243: Molecular Geomicrobiology Laboratory (BIO 142, EARTHSYS 143, ESS 143)

In this course, students will be studying the biosynthesis of cyclic lipid biomarkers, molecules that are produced by modern microbes that can be preserved in rocks that are over a billion years old and which geologist use as molecular fossils. Students will be tasked with identifying potential biomarker lipid synthesis genes in environmental genomic databases, expressing those genes in a model bacterial expression system in the lab, and then analyzing the lipid products that are produced. The overall goal is for students to experience the scientific research process including generating hypotheses, testing these hypotheses in laboratory experiments, and communicating their results through a publication style paper. Prerequisites: BIO83 and CHEM35 or permission of the instructor.
Terms: Spr | Units: 4 | Grading: Letter (ABCD/NP)
Instructors: ; Welander, P. (PI)

ESS 246B: Atmosphere, Ocean, and Climate Dynamics: the Ocean Circulation (CEE 162I, CEE 262I, EARTHSYS 146B)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the large-scale ocean circulation. This course will give an overview of the structure and dynamics of the major ocean current systems that contribute to the meridional overturning circulation, the transport of heat, salt, and biogeochemical tracers, and the regulation of climate. Topics include the tropical ocean circulation, the wind-driven gyres and western boundary currents, the thermohaline circulation, the Antarctic Circumpolar Current, water mass formation, atmosphere-ocean coupling, and climate variability. Prerequisites: MATH 51 or CME100; and PHYSICS 41; and CEE 162A or CEE 101B or a graduate class in fluid dynamics or consent of the instructor.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: ; Thomas, L. (PI)

ESS 251: Biological Oceanography (EARTHSYS 151, EARTHSYS 251, ESS 151)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (EESS/EARTHSYS 152/252). Prerequisites: BIO 43 and EESS 8 or equivalent.
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit

ESS 252: Marine Chemistry (EARTHSYS 152, EARTHSYS 252, ESS 152)

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (EESS/EARTHSYS 151/251)
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: ; Casciotti, K. (PI)

ESS 265: Advanced Geographic Information Systems (ESS 165)

Building on the Fundamentals of Geographic Information Systems course, this class delves deeper into geospatial analysis and mapping techniques. The class is heavily project-based and students are encouraged to bring their own research questions. Topics include topographic analysis, interpolation, spatial statistics, network analysis, and scripting using Python and Acrpy. All students are required to attend a weekly lab. ESS 164 or equivalent is a prerequisite.
Terms: Spr | Units: 4 | Repeatable for credit | Grading: Letter (ABCD/NP)
Instructors: ; Lyons, E. (PI)

ESS 270: Analyzing land use in a globalized world (ESS 170)

This course examines the dynamics of land use in relation to globalization. The objective is to understand how the expansion of global trade, and public and private regulations affect land use changes. The course will enable students to better understand how to effectively influence land use change, from different vantage points (government, NGO, corporate actor¿). The main emphasis is on tropical regions. Lectures introduce theories, practical cases, and evaluation tools to better understand contemporary land use dynamics.
Units: 3 | Grading: Letter (ABCD/NP)
Instructors: ; Lambin, E. (PI)

ESS 280: Principles and Practices of Sustainable Agriculture (EARTHSYS 180)

Field-based training in ecologically sound agricultural practices at the Stanford Community Farm. Weekly lessons, field work, and group projects. Field trips to educational farms in the area. Topics include: soils, composting, irrigation techniques, IPM, basic plant anatomy and physiology, weeds, greenhouse management, and marketing.
Terms: Spr | Units: 3-4 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: ; Archie, P. (PI)

ESS 292: Directed Individual Study in Earth System Science

Under supervision of an Earth System Science faculty member on a subject of mutual interest.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit | Grading: Letter or Credit/No Credit

ESS 301: Topics in Earth System Science

Current topics, issues, and research related to interactions that link the oceans, atmosphere, land surfaces and freshwater systems. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

ESS 385: Practical Experience in the Geosciences

On-the-job training, that may include summer internship, in applied aspects of the geosciences, and technical, organizational, and communication dimensions. Meets USCIS requirements for F-1 curricular practical training. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Letter or Credit/No Credit

ESS 401: Curricular Practical Training

CPT course required for international students completing degree. Prerequisite: Earth System Science Ph.D. candidate.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Rajaratnam, B. (PI)
© Stanford University | Terms of Use | Copyright Complaints